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Overview

In the line of the Vienna Science and Technology Fund (WWTF) project “Mathematics and
Nano-Sensors” a working relationship between the Austrian Institute of Technology (AIT)
and the Wolfgang Pauli Institute (WPI) was established to build and test AIT fashioned tin
oxide nanowire gas sensors and provide mathematical models to predict the outcome of gas
measurements. As state of the art gas sensors still suffer from low selectivity, the detailed
modeling of the surface reactions to different test gases is essential to overcome this issue.

Despite the considerable amount of papers giving detailed discussions of experimental
results in various gas atmospheres (a critic review can be found in [Comini et al. 2009]),
the discussed surface reaction models in the literature mainly concentrate on more simple
test gases like oxygen, carbon oxide and inert gases. Therefore we were highly interested in
providing surface models for additional gases like, for example hydrogen sulfide or nitrogen
dioxide, which are known to be important for environmental control systems and various other
applications.

The developed response models, described in this work, are composed of a surface reaction
model and a charge transport model and predict the change of conductance of the sensor upon
changes in the thermal and chemical environment. Different transport models in the form of
functional equations were derived for different types of sensor structures. The surface reaction
models consist of rate equations in the form of a system of parameter dependent ordinary
differential equations (ODEs), which differ depending on temperature, type of modeled gas as
well as possible interactions with other gases.

In order to facilitate the simulation of the sensor response, the theory of inverse model-
ing of dynamic models, with special regard to the estimation of model parameters through
nonlinear least squares estimators and suitable optimization algorithms, was discussed.

The simulation of the response of a gas sensor with a bundle of a nanowires as sensing
element in an inert atmosphere was accomplished by the fitting of 1 parameter in the charge
transport model and 5 parameters in the surface state model through nonlinear least squares
estimation.
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Overview

This work is therefore organized as follows:

Chapter 01 intends to familiarize the reader with the technical aspect of gas sensor and gives
an overview to their functionality.

Chapter 02 derives charge transport models for currently researched sensor architectures and
discusses their properties and applicability. Depending on the state of carrier depletion
in the sensor element different transport models were considered.

Chapter 03 gives a detailed derivation and discussion of parameter dependent ordinary dif-
ferential equation models that describe the chemical reactions between different types
of gases and the surface of a tin oxide sensor. Detailed surface reaction models were
derived for the most important test gas species.

Chapter 04 discusses the different types of surface reaction models and structures them into
a hierarchy starting with intrinsic model, oxygen model to combinations of test gas
models. Then we will analyze the qualitative properties of the most important surface
models to prove the existence and uniqueness of their solution.

Chapter 05 addresses the estimation of parameters for models consisting of ordinary differ-
ential equations. The standard form of an dynamical model is stated to aid the discussion
of the general course of action for estimating an ODE model with regard to a suitable
optimization algorithm. In the second part we will cover the theory of Nonlinear Least
Squares Estimators and discuss and prove their asymptotic properties.

Chapter 06 presents the quantitative analysis of the derived charge transport models in
combination with the intrinsic surface state trapping model. The response of a sen-
sor consisting of a bundle of nanowires in an inert atmosphere was simulated and the
parameters for the surface reaction model as well as the charge transport model were
fitted.
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Chapter 1

Introduction

Gas sensors are a type of chemical sensors, which are devices able to convert chemical states
into electrical signals, and are used to detect the concentration and hereby the presence of
certain target gases in the atmosphere. The detection of gases is important for many fields of
applications:

• safety engineering,

• health care,

• bio-sciences and

• environmental monitoring

if only to name a few. A quiet extensive (but still not exhaustive) list of current and possible
future applications can be found in [Zima 2009].

To meet this demand for the applicability to different fields, considerable research into
new types of sensors is needed, including efforts to enhance the performance and understand
the working principles of these sensor devices. Necessary properties of gas sensor are selectivity
(i.e., response only to the targeted gas) and sensitivity (i.e., providing of sufficiently measurable
sensor response). Current gas sensors however are highly cross sensitive, especially regarding
gas species that show similar reducing or oxidizing properties. The mathematical modeling of
the underlying sensing mechanisms, which is the modeling of the occurring surface reactions,
helps in the scientific understanding of these devices and is the key for further advancement
of the sensors to overcome the issue of cross selectivity.

The principle of gas detection with SnO2, or nearly every other metal oxide semiconductor,
is based on the measurable change of the electrical conductance upon the adsorption of gas
species, as there usually occurs a charge transfer between adsorbed gas molecules and the
sensor surface. As gas sensors are usually operated in an oxygen atmosphere, adsorbed oxygen
extracts electrons from the semiconductor and, if the sensing material conducts by electrons,
decreases the conductance. If, for example, carbonic target gas species are present in the
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Chapter 1 Introduction

atmosphere, they become ionized by pre-adsorbed negatively charged oxygen, when reacting
with the sensor surface, and return electrons into the solid. This leads to an increase in
conductivity. The conductance of a sensor is therefore much higher if a type of reducing gas,
like carbon monoxide, is present in the atmosphere then it is in “clean” air. Because of the large
surface-to-volume ratio of a nanowire-structured sensor device, the response of a nanowire gas
sensor is also very sensitive to changes in chemistry and dielectric properties of the surface,
caused by this exchange of charge carriers.

(a) (b) (c)

Figure 1.1: A schematic representation of the interaction of a SnO2 nanowire with O2 and
CO. Figure (a) shows oxygen, in atomic and molecular form in the atmosphere
around the nanowire. In the second figure oxygen species are bound to the surface
of the nanowire by extracting electrons from the bulk material. Figure (c) shows
the effect of CO as it extracts the oxygen species from the surface and reintroduces
the previously bound electrons into the nanowire.

It was known for many years that the electrical properties of semiconductors are sensitive
to ambient gases. After physical studies done by Brattain&Bardeen and Morrison in 1953
and since Seiyama et al. discovered in 1962 that the presence of reactive gas species in the
atmosphere causes a tremendous change in the electrical conductivity of ZnO, the use of metal
oxides semiconductors for gas sensing purposes was intensively studied.

Tin oxide arose as an especially favorable material for these purposes as it possesses a
high sensitivity to various target gases and is a generally well understood and easily fabricated
material [Zima 2009]. SnO2 was also used for the first commercial gas sensors, a Taguchi-type
sensor, manufactured by Figaro in Japan.

The semiconducting behavior of tin oxide arises, as is typical for metal oxides, from
deviations of the stoichiometry of the material, as otherwise ideal stoichiometric SnO2 would
be an isolator at room temperature. Therefore the termination of the periodic structure at
the surface of tin oxide may form surface-localized electronic states within the semiconductor
band gab. The n-conducting properties of the tin oxide stems from the electron donor effect of
the oxygen surface defects (e.g., oxygen vacancies) in the crystal lattice, which can be singly
and doubly ionized and play a significant role in the process of gas sensing. Those oxygen
vacancies are mainly formed in the manufacturing process, as oxygen atoms may escape into
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the atmosphere. The appearance of these acceptor states at the surface induce charge transfer
between the SnO2 bulk material and the surface to establish thermal equilibrium. This charge
transfer results in a region, depleted of charge carriers (i.e., electrons), under the surface of
the material, called the surface space charge region, which reaches approximately a few Debye
length into the bulk material [Comini et al. 2009]. Upon exposure to atmospheric oxygen,
more charge carriers are trapped into energy levels at the surface and the depletion region is
amplified.

(a) (b)

Figure 1.2: A schematic representation of the architecture of a nanowire sensor consisting of a
single nanowire (a) and bundle or network of nanowires (b).

Is the gas sensor then of nano-sized dimensions (i.e., comparable in size to the Debye
length), the whole device is nearly depleted of charge carriers and exhibits a much poorer
conductivity than micro-sized sensors in ambient air. Thus, when the nano-sized sensor is
exposed to a target gas, the resulting conductance change is much greater, as electrons released
from surface states have comparably a much greater impact on the conductance than in micro-
sized sensors [Huang and Wan 2009].

The architecture of such a nanowire gas sensor comprises of a single or a bundle of
nanowires bridging two metal electrodes (contacts) on a silicon substrate covered with SiO2,
acting as an insulating layer between the nanowire/electrode structure and the conducting
silicon, as can be seen in Figure 1.2.

The diameter of a nanowire lies in the scale of the gas species we wish to detect. Therefore
every single adsorbed gas molecule leads to a measurable change in the sensor conductance,
especially when considering the high surface-to-volume ratio of nanowires. A high sensitivity
to comparably small gas concentrations as well as a the small size are definite advantages of
nanowire gas sensors. Furthermore small response and recovery times as well as low production
costs are prominent advantages of nano-sized gas sensors [Tischner et al. 2009].

Although nanowire sensor devices are a definite advancement compared to traditional
nano-scale thin film sensors [Tischner et al. 2008; Zima et al. 2010], they still face some of
the common problems of those types of sensors. Noteworthy are their somehow unpredictable
response to the presence of humidity, their poor longtime stability and reproducibility and the
already mentioned low selectivity.
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Chapter 1 Introduction

(a) (b)

Figure 1.3: Picture of a single nanowire (a) and a bundle/network of nanowires (b). The single
nanowire is positioned between two contacts. According to References [Köck et al.
2009] and [Tischner et al. 2009].

For definitions to chemical and physical terminologies and concepts in this and the fol-
lowing chapters, the interested reader is referred to the work of [Zima 2009].
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Chapter 2

Charge Transport in the Sensors

The mechanism of charge transfer in a semiconductor gas sensor depends strongly on its
morphology. If the sensitive part of a sensor structure is fashioned as a sensor film, a general
distinction between compact and porous layers can be made. Compact sensing layers exclude
the possibility of gas penetrating the sensing layer. In this case the interaction with gas takes
place only on the geometric surface, where else porous sensing layers allow for the gas to access
the sensing layer. Their active surface reaches therefore into the sensing layer.

For compact sensing layers or sensors consisting of single nanowires a formula for the
conductance, as the product of conductivity and a geometry factor, for electrical devices with
a uniform cross section is applicable. When combined with an additional equation for the
density of electrons on the sensor surface the resulting conductance formula is applicable to
sensor with grain boundaries. This approach is referred to as the Potential Barrier Theory
(PBT) by a number of authors, [Ding et al. 2001; Morrison 1990].

The Thermoelectronic Emission Theory (TEET), also called Diode Theory, as well as the
Diffusion Theory (DT), which can be found in [Bârsan and Weimar 2001; Broniatowski 1985],
explain the link between surface phenomena and the measured conductance for porous sensor
films with grains larger than the Debye length λD.

All the above theories will then lead to an expression of the conductance as a function of
the surface potential barrier Vs. A further equation is therefore needed to link the value of Vs
to the concentration of surface states Ns, which are derived from surface reaction models in
Chapter 3.

Actually, both sensor constructions can be divided into two additional cases — thick and
thin sensing layers/nanowires, where the deciding factor is the ratio between the layer/wire
thickness and the Debye length. Depending on the actual morphology of the grain-grain
contact region the respective transport mechanism is determined. But ultimately the resulting
conductance formulas for the above mentioned sensor structures are basically the same and
only differ in a multiplicative constant.
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Chapter 2 Charge Transport in the Sensors

2.1 Potential Barrier Theory

The existence of surface states at a surface gives rise to a difference between the energy level
of the surface state and the conduction band of the bulk material. This enables electrons to
alternate between conduction band and surface states. The conduction electrons, which were
able to cross over and thereafter occupy a surface state, create a repulsive potential barrier
at the surface to further prevent the trapping of conduction electrons into unoccupied surface
states. Such potential barriers are a particular hindrance for electrons when they occur at the
contact areas between single grains, which are anyway rather narrow. In order to contribute
to the conductance, these electrons have to acquire enough kinetic energy to overcome the
surface potential barrier Vs while traveling through the grain contact areas.

When discussing the conductance G, one has to start with the microscopic conductivity
σ. The electric conductivity of a semiconductor crystal has a electronic/hole and a ionic part.
However, as tin oxide gas sensors are usually operated in temperatures between 200◦ and
400◦C, the ionic component of the conductivity can be neglected [Zima 2009]. Furthermore,
because of SnO2 being a n-type semiconductor, one refers to the electronic part of the overall
conductivity/conductance. The electronic conductivity in a homogeneous single crystal is
therefore given by

σ = σe + σp +
∑

σion,i ≈ σe + σp ≈ σe = q · µ · n,

where q gives the elementary charge, n is defined as the electron concentration and µ states
their mobility.

The relation between the conductivity σ and the conductance G for the case of an n-type
semiconductor is given by

G = const · σ = const · q · µ · ns (2.1)

for a constant factor const depending on the geometry of the sensor. As the conductance is
dominated by the electron transfer across the surface potential barrier at the inter-granular
contact regions, G is proportional to the density ns of electrons that are responsible for the
conduction at the surface. The density of electrons n can therefore be set to ns

To complete this relation we have to derive a equation to set the density of surface electron
in a relation to the potential barrier at the surface.
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2.1 Potential Barrier Theory

The Density of Electrons at the Surface ns

To calculate the electron density ns on the surface of a semiconducting material we have to
start with the bulk value nb. First we consider the density of charge carriers or occupied states
per unit volume and energy n(E), which is simply the product of the density of available states
in the conduction band gc(E) = 8π

√
2

h3 m?
e

3
2
√
E − EF and the probability that each of these

states is occupied, which is the Fermi-Dirac probability function f(E). The density of occupied
states is therefore given by

n(E) = gc(E) · f(E).

The density of electrons in the semiconductor bulk material is then obtained by integrating
the density of carriers over all possible energies within a band, as seen in equation

nb =

top of conduction band∫
bottom of conduction band

gc(E) · f(E)dE

=

∞∫
Ec

8π
√

2

h3
m?
e

3
2

√
E − EF ·

1

1 + exp
(
E−EF
kT

)dE.
As the Fermi function converges to zero for rising energies the actual location of the top of
the conduction band needs not be known and can be replaced by infinity. Assuming that the
Fermi level is at least 2kT away from the conduction band edge (i.e., Ec − EF > 2kT ), this
allows for the replacement of the Fermi distribution by the Boltzmann distribution. These
considerations leads us to

nb =

∞∫
Ec

8π
√

2

h3
m?
e

3
2

√
E − EF · exp

(
EF − E
kT

)
dE

=
8π
√

2

h3
m?
e

3
2

∞∫
Ec

√
E − EF · exp

(
EF − E
kT

)
dE

=
8π
√

2

h3
m?
e

3
2 · kT

3
2

2

√
π · exp

(
EF − EC

kT

)
= Nc exp

(
EF − EC

kT

)

with Nc = 2
(

2πm?ekT
h2

) 3
2

the effective density of states in the conduction band. The density of
electrons at the surface of an n-type semiconductor ns is then given by the previous equation
multiplied by a Boltzmann factor, taking the potential barrier at the surface into account.
Therefore, the density ns of free electrons energized enough to overcome the surface potential
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Chapter 2 Charge Transport in the Sensors

barrier Vs, is given by

ns = Nc exp

(
− (qVs + Ec − EF )

kT

)
= nb exp

(
−qVs
kT

)
, (2.2)

according to [Morrison 1990]. The conduction formula according to the Potential Barrier
Theory becomes therefore

G = const · qµnb exp

(
−qVs
kT

)
. (2.3)

2.2 Diffusion Theory

If the depletion layer is large compared to the mean free path of electrons, the Diffusion Theory
is applicable, as in this case the concepts of drift and diffusion are valid. To derive a equation
for the conductance we will consider the potential barriers on the two sides of the grain
boundary separately and then join the solutions under the condition of current continuity. We
consider the case of a n-type semiconductor like SnO2. Then the Diffusion Theory gives the
current density across the grain boundary as the sum of contributions from the dependence of
the current on field intensity and diffusion resulting from the gradient in the carrier density:

j(t) = σ(x, t)E(x, t) + qD
∂n

∂x

= −qµn(x, t)
∂V (x, t)

∂x
+ µkT

∂n(x, t)

∂x

for

D = µkT
q . . . . . . . . . . . . . . . . . . carrier diffusion coefficient,

V (x, t) . . . . . . . . . . . . . . . . . . . . electrostatic potential,
E(x, t) = −∂V (x,t)

∂x . . . . . . . . . electric field.

As solution of the above equation, the following expression for the current density in the
diffusion case is given, [Broniatowski 1985], by

j(t) = qµEinb

(
exp

(
−q (Va + Vi)

kT

)
− exp

(
−qVi
kT

))

for Ei the electric field strength on the ith side. Equating the current density for the left side
i = 1 and right side i = 2 gives us

E1

(
exp

(
−q (Va + Vi)

kT

)
− exp

(
−qV1

kT

))
= E2

(
exp

(
−q (Va + Vi)

kT

)
− exp

(
−qV2

kT

))
,
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2.3 Thermoelectronic Emission Theory

E2 exp

(
−qV2

kT

)
− E1 exp

(
−qV1

kT

)
= (E2 − E1) exp

(
−q (Va + Vi)

kT

)
,

which in turn leads to

exp

(
−q (Va + Vi)

kT

)
=
E2 exp

(
− qV2

kT

)
− E1 exp

(
− qV1

kT

)
E2 − E1

.

Insertion of the last relation into the equation for charge density for one side of the barrier
leads us to

j(t) =
qµE2nb
E2 − E1

(
E2 exp

(
−qV2

kT

)
− E1 exp

(
−qV1

kT

)
− (E2 − E1) exp

(
−qV2

kT

))

=
qµE1E2nb
E2 − E1

(
exp

(
−qV2

kT

)
− exp

(
−qV1

kT

))

=
qµEsnb

2
exp

(
−qV2

kT

)(
1− exp

(
−qVa
kT

))
,

where we set the applied voltage Va = V1−V2 to zero to get the barrier height Vs as well as field
strength Es = E1 = −E2 at the boundary. When we differentiate the current density with
respect to Va we get the slope of the current-voltage characteristics, which is the conductivity
(according to [Taylor et al. 1952]), when we set the applied voltage Va to zero. The conductivity
is therefore given by

σ =
dj

Va

∣∣∣∣
Va=0

=
q2µ

2kT
Esnb exp

(
−qVs
kT

)
=
q5/2n

3/2
b µV

1/2
s√

2εkT
exp

(
−qVs
kT

)

as Es equals
√

2qnbVs
ε according to [Broniatowski 1985]. By multiplying the conductivity with

an factor const, which is the effective area seen by electrons while traveling from grain to
grain, we obtain

GDT = const
q5/2n

3/2
b µV

1/2
s√

2εkT
exp

(
−qVs
kT

)
, (2.7)

the conduction formula of the Diffusion Theory.

2.3 Thermoelectronic Emission Theory

For the case that the surface potential barrier width is much smaller than the mean free path
of electrons (λ ≥ x0), the current density is proportional to the difference of the electron fluxes
crossing the interface. Therefore only those electrons with kinetic energy equal or larger than
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Chapter 2 Charge Transport in the Sensors

the potential barrier height are able to cross the boundary. This is reflected in the current
density

j(t) = qnbvth

(
exp

(
−qV2

kT

)
− exp

(
−qV1

kT

))
,

where the mean thermal velocity of electrons vth is given by
√

8kT
πm? andm? denotes the effective

mass of electrons. As the applied voltage or bias is given by Va = V1 − V2 we can rewrite the
current density as

j(t) = qnbvth exp

(
−qV2

kT

)(
1− exp

(
−qVa
kT

))
.

Differentiation of the current density with respect to Va results in the electrical conductivity

σ =
dj

Va

∣∣∣∣
Va=0

=
q2nbvth
kT

exp

(
−qVs
kT

)
when we set the applied voltage to zero. By multiplication with an area factor we get the
conduction formula for the Thermoelectronic Emission Theory

GTEET = const · q
2nbvth
kT

exp

(
−qVs
kT

)
. (2.8)

The previous section revealed that the conductance formulas derived for Potential Barrier
Theory, Diffusion Theory as well as Thermoelectronic Emission Theory are of a similar form

G = const · q v nb exp

(
−qVs
kT

)
, (2.9)

while v denotes a velocity term given by

v =


µ Potential Barrier Theory
q

2kT µEs Diffusion Theory
q
kT vth Thermoelectronic Emission Theory,

whose exact form depends on the underlying theory.

In order to relate the above conductance formula to the density of occupied surface states
Ns, which in the following chapter is obtained from surface states models, we need to derive
the surface potential barrier Vs as a function of Ns. For this purpose we also have to consider

10



2.4 The Surface Potential Barrier Vs and Depletion of Charge Carriers

the state of charge depletion in the respective nanostructure.

2.4 The Surface Potential Barrier Vs and Depletion of

Charge Carriers

The actual link between the measured quantity of conductance and the occupied surface states
Ns is given by either the Schottky relation or a more close examination of the geometry of the
sensor structure. The choice of the type of approach depends on the width of the nanostructure
w in relation to the width of its depletion region, which scale can be described by the Debye
length λD. The case λD � w applies to sensors whose depletion region does not reach very
far into the nanostructure. These sensing areas have therefore a inner region unaffected by
surface phenomena. In the case of λD ≈ w, the sensor is completely depleted of bulk electrons
and surface phenomena therefore influence the conductance of the whole sensing area.

In both cases we will derive an expression for the surface potential barrier in terms of
the surface state density, which will then be used to include the value of Ns into the already
derived conductance formulas.

2.4.1 Partial Depletion

For nanostructures which are not completely depleted of charge carriers (λD � w), we derive
the Schottky relation from the one-dimensional Poisson equation

d2ψ

dx2
=
qNi
ε
,

with ψ the electrical potential and Ni the ion density in the space-charge region. The Poisson
equation describes the change in the electrical potential as a function of the distance through
the space charge region. We change the coordinates to V (x) = ψ0−ψ(x), with ψ0 the electrical
potential in the bulk material, in order to gain the relation

V =
qNi (x− x0)

2

2ε
,

after solving the Poisson equation with the boundary condition dV
dx = V = 0 for x = x0,

while x0 denotes the thickness of the depletion layer, 0 ≤ x ≤ x0. As for n-type material
Ni = ND, which is the density of electrons in the semiconductor. The factor NDx0 denotes
then the number of electrons extracted from the space charge region. As the electroneutrality
condition states that the charge in the depletion layer equals the charge captured on the
surface, [Bârsan and Weimar 2001], the product NDx0 also denotes the density of charged
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Chapter 2 Charge Transport in the Sensors

surface states Ns. This calculation leads us finally to the Schottky relation

Vs =
qN2

s

2εND
, (2.10)

with Vs the surface potential barrier for x = 0, where ε states the electrical permittivity of the
semiconductor material.

According to [Madou and Morrison 1989] all the donors in SnO2 are ionized at room
temperature and above so the density of ionized donors ND can be considered constant, [Ding
et al. 2001; Fort et al. 2006b]. Then, according to [Bârsan and Weimar 2001], the density of
electrons in the bulk for a semiconductor with completely ionized donors and little acceptors
equals the density of donors:

nb = ND. (2.11)

2.4.2 Complete Depletion

For thin nanostructures with a scale of diameter comparable to the Debye length (λD ≈ w), the
Schottky relation is not applicable. In this case we first consider the nanowire as a cylinder
with radius R, a depletion region of thickness x0 and charge density equal to ND, as was
proposed by [Fort et al. 2010]. We introduce cylindrical coordinates and write the electrical
field in the depletion region as

E(r) =
qND
2ε

(
r − (R− x0)

2

r

)

and get the electrical potential

V (r) =
qND
2ε

(
r2

2
− (R− x0)

2
ln(r)

)

from the relationship dV (r)
dr = E(r). This implies that the surface potential barrier Vs is the

difference between the electrical potential on the surface and the potential at the begin of the
depletion region

Vs = V (R)− V (R− x0)

=
qND
2ε

(
2Rx0 − x2

0

2
− (R− x0)

2
ln

(
R

R− x0

))

=
qND
4ε

R2 for R ≈ x0.

(2.12)
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So, in the case of a complete depletion of the wire (R ≈ x0), we find that the surface poten-
tial barrier is not depending directly on the Ns but rather through the value of donor density
ND. The corresponding relationship can be found through the electroneutrality condition

qNs · 2πRl = qND · π
(
R2 − (R− x0)

)2

,

according to which the electrical charge on the surface of the nanowire equals the charge in the
depletion region throughout the nanowire, while l denotes the length of the nanowire. This
implies

x0 = R−
√
R2 − 2

Ns
ND

R ⇒ ND ≈ 2
Ns
R

if we regard the depletion region with R ≈ x0. Therefore the density of bulk donors cannot
be considered constant and equal to the density of ionized donors ND anymore, but varying
with the density of occupied surface states. Hence, [Fort et al. 2010] found the density of free
electrons in the bulk material nb as

nb = ND − 2
Ns
R
, (2.13)

which is the difference between the density of donors and the electrons occupying the surface.

2.5 The Conductance Formulas

Equations (2.10) and (2.12) show clearly that a change in the density of occupied surface
states Ns effects the potential barrier and results consequently in a change in conductance.
Therefore, in combination with the conductance formulas (2.9) and the relationships for the
density of bulk electrons given in (2.11) and (2.13), the equation

G(T, Vs) =

G0

(
1− Ns

NDR

)
exp

(
−q2ND
4εkT

)
+GC for λD ≈ w

G0 exp
(
− q2N2

s

2εNDkT

)
+GC for λD � w.

(2.14)

describes the conductance of a sensor, depending on the grade of carrier depletion. The case
λD ≈ w marks the completely depleted nanowire and λD � w applies to a nanostructure of
greater diameter/width, so that there exists a inner region unaffected of surface phenomena.

The pre-exponential factor G0 has the form of

G0 = const · q v nb, (2.15)
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Chapter 2 Charge Transport in the Sensors

while the velocity term v changes depending on the underlying theory. For a partly depleted
nanostructures the nb can be set to the density of donors ND, according to (2.11). In the case
of complete charge depletion the value of nb was excluded from G0 and separately considered,
as described by equation (2.13).

The additive term GC in equation (2.14) is a parameter used to provide for various
conduction phenomena, like a drift in the sensor signal, and to give the baseline level. This
parameter as addition to the conductance formula was introduced by [Ding et al. 2001].

The diffusion theory states the dependence of G0 on V 1/2
s . Given the already exponential

dependence of G on Vs in the second term of (2.14), this can be neglected. The same reasoning
is applicable to the temperature-dependence of the pre-exponential factor, since µs ∝ T−3/2

according to [Madou and Morrison 1989]. Some authors like Fort et al. have nevertheless
chosen to express G0 as G′0T−3/2 and regard G′0 as a constant. Otherwise, the whole pre-
exponential factor G0 is often regarded as a constant and can therefore be estimated, along
with GC , in a parameter fitting process.

Figure 2.1: Illustration of the conduction in a network of nanowires. The charge depletion
region under the surface of the nanowires is due to the adsorption of oxygen species.
The resulting potential barrier between touching nanowires is depicted in the band
diagram where Ec, Ef , Ev and Eg are the conduction band, Fermi level, valence
band and the band gap. qVs denotes the height of the surface potential barrier.
See [Choi et al. 2008], Figure 4 and [Zima 2009], Figure 2.14.

Despite the fact that equations like (2.14) were intended to describe the conductance in
layer of semiconducting material, [Fort et al. 2010] argued their applicability to a bundle of
semiconducting nanowires. The current path consists of many nanowires with small contact
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2.5 The Conductance Formulas

regions. For this type of sensor the contact points between nanowires act similarly to the
contact regions between the grains in a porous layer and therefore build up a surface potential
barrier, which electrons have to overcome in order to contribute to the charge flow and add to
the sensor conductance. Indeed, according to [Comini et al. 2009], the conduction mechanism
of nanowire bundles is dominated by the intercrystalline boundaries at the connection regions
between nanowires, as these contact points provide most of the resistance of the sample.

Regarding the modeling of conductance in a single nanowire sensor the same group of
authors have shown that also in this case the conduction model (2.14) is applicable, [Fort
et al. 2009]. Despite this, the case of a single nanowire, can also be modeled through classical
semiconductor transport equations like the Drift-Diffusion Model or the Poisson-Boltzmann
equation, [Katterbauer 2010].
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Chapter 3

Surface Reaction Models

This section will give surface reaction models derived from chemical reaction equations, which
depict the interaction of different kinds of gases and a metal oxide surface, or, to be more
specific, on tin oxide (SnO2).

3.1 Introduction

The ability of gas sensors to detect the presence of chemicals in the atmosphere depends on
the interaction between gas and sensor surface. A strong interaction is possible due to the fact
that at the surface of the sensing area the periodicity of the crystal lattice is disrupted, thus
increasing the reactivity of the sensing area. Also factors like doping, alloying, adsorbates or
impurities would influence the reactivity of a surface.

In these cases localized energy states arise at the surface, which are able to exchange electrons
with the sensor bulk atoms. These energy levels are called surface states. The fundamental
theory to the idea of surface states can be found in the work of [Morrison 1990; Madou and
Morrison 1989]. The group Ding et al., who based their work on Morrison et al., differentiate
between intrinsic and extrinsic surface states and characterize them as follows:

Intrinsic surface states: They are created by the semiconductor itself, and include energy lev-
els stemming from impurities, doping and oxygen vacancies in the metal oxide lattice.
These energy states are the cause for the sensor response to inert gases, like Argon (Ar)
in [Ding et al. 2001] and Nitrogen (N2) in [Lu et al. 2006], where there is no reaction
possible between gas and surface.

Extrinsic surface states: These localized surface energy levels, on the other hand, are created
through adsorbed gas molecules at the SnO2 surface, like adsorbed oxygen.

In both cases the exchange of electrons between the conduction band of the metal oxide and
a surface state leads to an occupied and consequently charged surface state.
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Chapter 3 Surface Reaction Models

In the following, Ns represents all the occupied surface states, which includes those intrin-
sically present in the semiconductor, Nsi, and the extrinsic surface states Nse, which essentially
consist of all adsorbed gas species on the sensor surface which got ionized by gaining or loosing
electrons:

Ns = Nsi +Nse.

Intrinsic surface states are generally negatively charged because of the reception of a conduction
electron. For extrinsic surface states the situation depends entirely on the type of reaction
taking place between SnO2 surface and adsorbed gas species. In the case of an adsorbed
oxygen species occupying a surface site the oxygen gets ionized trough an electron stemming
from the conduction band. This leads to a negatively charged occupied surface state.

Some reducing gases like CO are also possible to react with the SnO2 surface directly
instead of through an pre-adsorbed oxygen species. This leads to CO acting as a donor for
reintroducing an electron into the conduction band of the tin oxide and becoming a positively
charged occupied extrinsic surface state.

3.2 Intrinsic Surface States

According to the intrinsic surface state trapping model of [Ding et al. 2001] a temperature
increase in an argon atmosphere leads to a thermal excitation of valence electrons. This brings
them into the conduction band where they act as free charge carriers and thereby increase the
electrical conductivity. The electrons in the conduction band are also thermally excited and
some may acquire enough additional energy to overcome the potential barrier at the surface
and be trapped in unoccupied surface states.

There are more electrons being trapped in an surface state than there are electrons leav-
ing an occupied surface state. Therefore the potential barrier is building up until a new
thermodynamic equilibrium is established.

If the sensor undergoes a quick decrease in temperature the above mentioned process
is reversed. Conductance electrons will return to the valence band and occupied surface
states will release their electrons back into the conduction band. There will be more electrons
evacuating an occupied surface state than electrons being trapped into an unoccupied state.
Because of this the potential barrier is lowered again to a new equilibrium.

The effect of a change in temperature effects the thermal excitation of an electron into
a different energy band much more quickly than the process of trapping electrons into or
releasing them from surface states.

Although the surface states indicate bands of energy levels it is more convenient to handle

18
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them as a single energy level Et. To evaluate the rates for electron transfer between surface
state Et and conductance band Ec we assume that the rate of electron transfer is of first order.
This means that

a) the rate of electron trapping is proportional to the density of unoccupied surface states
and the density of electrons in the conduction band at the surface and

b) the rate of electron release to the conduction band is proportional to the density of
occupied surface states.

As the sensor surface has no contact to any type of reactive gas the conductivity is uniquely
determined by the amount of occupied (i.e., ionized) intrinsic surface states, Nsi, which are
part of all intrinsic surface states Ni — occupied and unoccupied.

The above explained reactions are therefore shown in the reaction equation

Ni + e−
ki


k−i

Nsi, (3.1)

where the constants ki and k−i are the reaction rates for electron trapping and releasing, while

Ni . . . . . total density of occupied, intrinsic surface states,
Nsi . . . . density of occupied, intrinsic and ionized surface states.

The application of the law of mass action, [Lund 1965], gives the overall rate for the change
of the electron density in the surface states, which is expressed by

dNsi
dt

= kins (Ni −Nsi)︸ ︷︷ ︸
density of unionized intrinsic surface states

−k−iNsi. (3.2)

This denotes the density of occupied intrinsic surface states for the density of electrons ns in
the conduction band at the surface. The above model can also be found in the work of [Fort
et al. 2007].

3.3 Extrinsic Surface States

3.3.1 Adsorption of Oxygen (O2)

Although oxygen is a oxidizing gas and could therefore be incorporated in the below section
dedicated to this type of gases, it was decided to provide a full section for the discussion of
O2-driven surface reactions. The reason for this, is that oxygen, as the dominant non-inert
component of air, is the reaction determining gas for measurements intended to model the
influence of gases on tested gas sensors in an real-life application.
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At temperatures between 100 and 600◦C oxygen molecules in the atmosphere interact
with the SnO2 surface. At first O2 is adsorbed to the surface of the metal oxide through
physisorption, without influencing its electric properties. With the following chemisorption
and ionization the oxygen gets possibly dissociated and bound to the surface through an
unoccupied chemisorption site for oxygen in molecular (O−2 ) and atomic (O−, O−−) form,
while extracting electrons from the semiconductor to ionize the chemisorbed oxygen. These
electrons are free conduction electrons, stemming from ionized donors, which get trapped in
a surface state (i.e., the chemisorbed oxygen species) and thereby cannot anymore contribute
to the conduction of the sensor.

As the temperature increases the oxygen is adsorbed in the following forms and ways

O2(gas) 
 O2(ads)

+e−



−e−

O−2(ads)

+e−



−e−

O−−2(ads) 
 2O−(ads)

+e−



−e−

2O−−(ads) 
 2O−−(lat),

while the subscripts (gas), (ads) and (lat) denote that the corresponding gas species resides
unbounded in the atmosphere, is adsorbed and is bounded into the crystal lattice of the surface
respectively.

The chemisorption of atmospheric oxygen starts at temperatures around 100◦C. Below
that temperature only physisorption, if anything, takes place, leading to O2(ads) on the surface.
In the temperature range from 100 to 150◦C the dominating oxygen species on the tin oxide
surface is chemisorbed molecular oxygen O−2(ads), which later may acquire another electron
to form O−−(ads) and dissociate in higher temperatures. Above 150◦C the atmospheric oxygen
dissociates upon contact and adsorbed in atomic form (O−(ads) and O−−(ads)), while the singly
ionized form dominates the temperature range below 450◦C. Above this temperature O−−

is predominant. This species is then directly incorporated as bridging oxygen into the SnO2

lattice in the form of O−−(lat) above 600◦C, according to [Tabata et al. 2003].

Corresponding to [Bârsan and Weimar 2001] and [Fort et al. 2006b], the following two-step
reaction equation for oxygen illustrates the reversible surface reaction

Chemisorption:
β

2
O2(gas) + S

kO


k−O

Oβ(ads), (3.3a)

Ionization: Oβ(ads) + α · e−
kO−



k−O−
O−αβ(ads), (3.3b)

where kOβ and k−Oβ are the rate constants for the chemisorption and kO−α
β

and k−O−α
β

the
rate constants corresponding to the oxygen ionization. The used notations are:

O2(gas) . . . . . oxygen molecule in the ambient atmosphere and their concentration [O2(gas)],
e− . . . . . . . . . electrons, which can reach the surface (with concentration ns = [e−]),
S . . . . . . . . . . unoccupied chemisorption site,

20
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Oβ(ads) . . . . . chemisorbed oxygen species occupying a chemisorption site for oxygen at
the surface (their concentration is denoted as NOβ = [Oβ(ads)]),

O−αβ(ads) . . . . . chemisorbed and ionized oxygen species with concentration NO−α
β

,

St . . . . . . . . . unoccupied or occupied chemisorption site on the surface,

while

α =

1 for singly ionized forms,

2 for doubly ionized forms
and β =

1 for atomic forms,

2 for molecular forms.

As above mentioned, for temperature ranges below 150◦C the molecular oxygen species
are dominant (β = 2), while above this temperature oxygen chemisorbs in atomic form, both
in singly ionized form (α = 1). At elevated temperatures around 400◦C the doubly ionized
oxygen species (α = 2 and β = 1) is predominant.

The presence of these species leads to the formation of a depletion layer and subsequent
a space-charge region at the surface of the tin oxide. This region then leads to a potential
barrier at the surface of the semiconductor. This process decreases the conductance of SnO2,
depending on the density of the chemisorbed surface oxygen on the semiconductor surface,
which itself depends on the partial pressure or the concentration of oxygen in the atmosphere.

Rate Equation

The activation energies for adsorption and desorption included in the reaction constants, kOβ ,
k−Oβ , kO−α

β
and k−O−α

β
as well as the mass action law applied to (3.3) yield

kOβ ([St]−NOβ −NO−α
β

)[O2(gas)]
β/2 = k−OβNOβ , (3.4a)

kO−α
β
nαsNOβ = k−O−α

β
NO−α

β
, (3.4b)

while a first order adsorption reaction is assumed, which complies to the majority of literature
regarding the derivation of surface reaction models, [Fort et al. 2006b; Ding et al. 2001].

On these bases we get the rate equations in the form of differential equations, describing the
rate of adsorbed (neutral and ionized) oxygen density change, which read like

dNOβ

dt
= kOβ ([St]−NOβ −NO−α

β
)[O2(gas)]

β/2 − k−OβNOβ −
dNO−α

β

dt
, (3.5a)

dNO−α
β

dt
= kO−α

β
nαsNOβ − k−O−α

β
NO−α

β
. (3.5b)
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3.3.2 The influence of Humidity (H2O)

Humidity is an ubiquitous factor for the operation of gas sensors in ambient air, therefore the
influence of gaseous H2O on the sensor response should be analyzed. At temperatures between
100 and 500◦C, the interaction of a metal oxide surface with water vapor leads to molecular
water and hydroxyl groups adsorption, although above 200◦C no more molecular water can
be found on a SnO2 surface.

There are three types of mechanisms explaining the experimentally proven (as seen in
[Bârsan and Weimar 2001]) increase of surface conductivity in the presence of water vapor.
All of them take into account that

a) water vapor increases surface conductance and

b) the effect is reversible.

Nevertheless, after studying the adsorption mechanism of CO under the influence of humidity,
[Bârsan and Weimar 2003] strongly suggests that the reaction mechanism

H2O(gas) + Sn(lat) + O(lat)

kH2O



k−H2O

(Sn+
(lat) −OH−(ads)) + (OH)+

(lat) + e−

is chosen, where (Sn+ − OH−) is a so called isolated OH group and OH+
(lat) a rooted one.

The electron on the right hand side, which is subsequently injected into the conduction band,
stems from the rooted hydroxyl group as it gets ionized and becomes a donor.

To derive a rate equation based surface reaction model we simplify the above reaction
equation such that the lattice oxygen and tin species are treated as unoccupied surface sites
[S]. This consideration leads to

H2O(gas) + 2S
kH2O



k−H2O

OH−(ads) + H+
(ads) + e−. (3.6)

If we would anticipate chemical reactions between the hydroxyl groups and other adsorbing
gas species we give separate rate equations for [OH−(ads)] and [H+

(ads)], but otherwise those two
adsorbed species can be represented through the joint rate equation

d[OH−(ads) + H+
(ads)]

dt
= kH2O[H2O][S]2 − k−H2Ons[OH−(ads) + H+

(ads)]. (3.7)

The link to other reaction models would be provided by the equation for unoccupied surface
sites [S] = [St] − [OH−(ads) + H+

(ads)] minus the concentration of various other adsorbed gas
species.
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To avoid such a complicated expansion of existing surface reaction models, the effect of
humidity on the operation of a metal oxide gas sensor can be circumvented by only taking
measurements in a dry atmosphere. Should one nevertheless want to quantify the effect of
water adsorption on the charge carrier concentration, ns (which is normally proportional to
the measured conductance), one could include the effect of water by considering the effect of
an increased background of free charge carriers on the adsorption of varying gases. This of
course is a simplification that would work if the respective test gas is not probable to react
with OH− groups on the surface, as, for example, CO clearly is [Zima 2009]. To find humidity
as a reaction product from surface reactions of hydrogen-containing test gases is also possible.
As a consequence all subsequent surface reaction models are intended for a dry atmosphere.

We will now turn our attention to surface reactions stemming from various gas species.
The mechanism of gas detection is usually intimately related to reactions between a target
gas and previously adsorbed oxygen species, although a direct adsorption of gas species onto
the surface is also possible for various gas species. Independent of the use of pre-adsorbed
gas species as an intermediary step, gases can be classified into two major groups, depending
on their mode of operation in a reduction-oxidation reaction. The chemical reactions on a
SnO2 surface can therefore by divided into two basic cases, depending on the type of target
gas causing it:

Reducing Gases: Gases acting as reducing agents in a redox reaction generally are electron
donors. These gas species therefore increase the conductance of the semiconductor upon
adsorption, by releasing electrons into the conduction band of the sensor.

Oxidizing Gases: Oxidizing gases act as an oxidizing agent in a redox reaction and operate
in a reversed manner to a reducing gas by becoming an electron acceptor. This type of
gases cause a decrease in the semiconductor conductance by binding free electrons into
unoccupied surface states.

3.3.3 Reducing Gases

It is considered in [Fort et al. 2006b] that, if the reducing gas concentration [Red(gas)] is low with
respect to the oxygen concentration in the carrier gas (at most 400 ppm (i.e., 0,04%) [Red(gas)]

versus 2.1× 105 ppm (i.e., 21%) [O2]), then the most probable reaction would be: A reducing
gas Red(gas) reacts with the chemisorbed oxygen O−(ads) in the atomic and singly charged form
(α = β = 1) on the semiconductor surface, releasing electrons into the semiconductor and
desorbing as the gaseous reaction product RedO(gas) from the semiconductor surface, [Häusler
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2004]:

Red(gas) + O−(ads)

kRedO−−−−→ RedO(gas) + S + e− (3.8)

with S a vacant chemisorption site, formerly occupied by the oxygen reacting with the reduced
gas and kRedO the rate constant for the oxidation reaction (i.e., the rate for the RedO(gas)

production). In this case the reaction is irreversible, as shown by the reaction arrow.

The release of the charge carriers into the conduction band of the semiconductor leads to
an increase in conductance on the semiconductor surface, depending on the concentration of
reducing gas in the atmosphere.

We modify the rate equations of oxygen adsorption (3.5) to consider the reaction between the
reducing gas and the ionized oxygen, which leads us to

dNO

dt
= kO([St]−NO −NO−)p

1/2
O2
− k−ONO −

dNO−

dt
, (3.9a)

dNO−

dt
= kO−nsNO − k−O−NO− −

[RedO(gas)]

dt
, (3.9b)

[RedO(gas)]

dt
= kRedO[Red(gas)]NO− . (3.9c)

As this model describes the most basic of possible reactions caused by a reducing gas,
it can be implemented to model the sensor response to all reducing gases, or more generally,
gases ultimately increasing the sensor conductance. But, as even surface reactions caused by a
well researched gas like CO are quiet varied, a sensor model derived from the actual chemical
reactions caused by a specific gas can be much more detailed.

Carbon Monoxide (CO)

Carbon Monoxide is a highly inflammable gas which occurs in combustion motors as well as
a side product through the burning of fossil fuels. A careful screening of CO levels is required
not only because carbon monoxide is a respiratory poison in higher quantities, but also to
monitor the combustion efficiency and pollutant emission in various industrial settings.

CO is considered to react with pre-adsorbed oxygen or lattice oxygen if there are no
oxygen adsorbates. If there is no pre-adsorbed oxygen on the surface of the metal oxide,
the CO reacts with lattice oxygen and donates electrons, therefore increasing the surface
conductivity, according to the reaction equation

Chemisorption: CO(gas) + S
kCO



k−CO

CO(ads), (3.10a)
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Ionization: CO(ads)

kCO+



k−CO+

CO+
(ads) + e−. (3.10b)

This yields the rate equations for CO, which describe the sensor dynamics in the presence of
carbon monoxide:

dNCO

dt
= kCO[S][CO]− k−CONCO −

dNCO+

dt
, (3.11a)

dNCO+

dt
= kCO+NCO − k−CO+nsNCO+ , (3.11b)

for [S] = [St]−NCO −NCO+ .

Equations (3.10) refer to the case of CO measurements in an atmosphere consisting of
inert gases. However in an air atmosphere, which indicates the presence of adsorbed oxygen
at the surface, CO increases the surface conductance, according to [Bârsan and Weimar 2001].
This phenomenon is explained in

CO(gas) + O−(ads)

kCO2−−−→ CO2(gas) + e− + S, (3.12)

with the reaction constant kCO2
for carbon dioxide production.

The application of the law of mass action gives us

d[CO2(gas)]

dt
= kCO2pCONO− ,

the corresponding rate equation for CO, which can be added to equations (3.3) in the manner
described in (3.9).

According to [Hahn et al. 2003], depending on the amount of oxygen in the atmosphere,
both of the reaction mechanisms described above can occur, especially in low concentrations
of O2 (about 25 to 50 ppm or 0.0025 to 0.005%) as opposed to 250ppm CO (i.e., 0.025 %).
However the higher the amount of oxygen in the atmosphere and therefore in adsorbed and
ionized form on the SnO2 surface, the more likely is reaction (3.12). A combination of these
two reaction mechanisms for CO and the rate equations for oxygen leads to

dNO

dt
= kO[S][O2]1/2 − k−ONO −

dNO−

dt
(3.13a)

dNO−

dt
= kO−nsNO − k−O−NO− −

d[CO2(gas)]

dt
(3.13b)

d[CO2(gas)]

dt
= kCO2 [CO]NO− (3.13c)

dNCO

dt
= kCO[S][CO]− k−CONO −

dNCO+

dt
(3.13d)

dNCO+

dt
= kCO+NCO − k−CO+nsNCO+ (3.13e)
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with [S] = ([St]−NO−NO− −NCO−NCO+), the concentration of unoccupied surface states.

Molecular Hydrogen (H2)

Hydrogen is a highly combustible gas and is regarded as a promising candidate as future energy
carrier for rocket fuel or fuel cells. It is also a contaminating component in chemical industries,
which necessitates the reliable detection of hydrogen.

At comparatively low temperatures (100 to 300◦C) there is no dissociation of H2, accord-
ing to [Gong et al. 2004]. Therefore, the hydrogen molecules react directly with the adsorbed
oxygen species on the surface. In this range of temperature the adsorbed oxygen is comprised
of molecular and atomic singly ionized species (O−2 and O−). As already mentioned, for tem-
peratures below 150◦C the molecular oxygen species (O−2 ) is dominant on the sensor surface.
Therefore reaction

2H2(gas) + O−2
kH2(1)−−−−→ 2H2O(gas) + S + e− (3.14)

is likely to occur. In combination with the reaction kinetics for oxygen adsorption it leads to

dNO2

dt
= kO2

[S][O2]− k−O2
NO2

−
dNO−

2

dt
, (3.15a)

dNO−
2

dt
= kO−

2
nsNO2 − k−O−

2
NO−

2
−
d[H2O(gas)]

dt
, (3.15b)

d[H2O(gas)]

dt
= kH2(1)[H2]NO−

2
, (3.15c)

while [S] = ([St]−NO2 −NO−
2

).

In a temperature regime above 150◦C the singly charged atomic oxygen species (O−) is
dominant and makes reaction

H2(gas) + O−
kH2(2)−−−−→ H2O(gas) + S + e− (3.16)

more likely to occur. If we derive the corresponding rate equation and combine it with the
reaction kinetics of oxygen adsorption (in O− form) we get

dNO

dt
= kO[S][O2]1/2 − k−ONO −

dNO−

dt
, (3.17a)

dNO−

dt
= kO−nsNO − k−O−NO− −

d[H2O(gas)]

dt
, (3.17b)

d[H2O(gas)]

dt
= kH2(2)[H2]NO− (3.17c)

with [S] = ([St] − NO − NO−) the concentration of unoccupied surface states. This second
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reaction mechanism for H2 was also employed to derive a response model in the work of
[Yamazoe and Shimanoe 2010].

The work of [Malyshev and Pislyakov 2008], on the other hand, suggests that the adsorp-
tion of molecular hydrogen onto a metal oxide surface in temperatures above 350 to 400◦C
follows a two step reaction. While the first part of this mechanism consists of the dissociation
of H2 and the production of OH groups, the second part consists of the recombination of these
species leading to the desorption of gaseous H2O. As the temperature is above 350◦C the
adsorbed oxygen species on the surface exist in the form of O−−. The associated reaction
mechanism leads to

1

2
H2(gas) 
 H(gas),

H(gas) + O−−(ads) → OH−(ads) + e−,

H(gas) + OH−(ads) → H2O(gas) + S + e−,

which can be combined into one reaction, leading to the overall reaction equation

H2(gas) + O−−(ads)

kH2(3)−−−−→ H2O(gas) + S + 2e−. (3.19)

This combined reaction mechanism coincides with the reaction equation pertaining to H2 and
O−− given by [Gong et al. 2004]. The corresponding rate equation can be combined with the
reaction kinetics for O−−, leading to

dNO

dt
= kO[S][O2]1/2 − k−ONO −

dNO−−

dt
, (3.20a)

dNO−−

dt
= kO−−n2

sNO − k−O−−NO−− −
d[H2O(gas)]

dt
, (3.20b)

d[H2O(gas)]

dt
= kH2(3)[H2]NO−− , (3.20c)

while [S] denotes the available surface sites and are given by [St]−NO −NO−− .

Methane (CH4)

Methane is formed through the bacterial decomposition of organic material and the production
of fossil fuels and acts as a greenhouse gas. The accurate detection of CH4 is therefore especially
important for environmental control and industrial production processes.

While the possible chemical reactions taking place between Methane and a metal oxide
surface are numerous, are diverse in their reaction products (hydrogen, gaseous water and
various carbon-hydrogen-oxygen compounds [Kohl 2001]) and are not completely understood,
the reaction mechanisms proposed by [Quaranta et al. 1999] were chosen to form the surface
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reaction model

CH4(gas) + 2O(lat)

kCH4(1)−−−−−→ CH−3 O(lat) + H−O(lat), (3.21a)

CH−3 O(lat) + 2O(lat) + 2O−(ads)

kCH4(2)−−−−−→,CO2(gas) + 3H−O(lat) + 2e− (3.21b)

2CH−3 O(lat) + O−(ads)

kCH4(3)−−−−−→ .H2O(gas) + C2H4(gas) + 2O(lat) + e− (3.21c)

The lattice oxygen occurring in these reactions is treated as an unoccupied adsorption
site [S], as O(lat) is not consumed by the desorption of gases to form a oxygen vacancy. Even
more complex reactions can be found in [Kohl 2001].

After the application of the law of mass action the rate equations

d[CH−3(ads)]

dt
= kCH4(1)[S][CH4]−

d[CO2(gas)]

dt
−
d[H2O(gas)]

dt
, (3.22a)

d[CO2(gas)]

dt
= kCH4(2)[CH−3(ads)]N

2
O− , (3.22b)

d[H2O(gas)]

dt
= kCH4(3)[CH−3(ads)]NO− (3.22c)

can be derived from (3.21).

As the contributing oxygen species are of the molecular, singly ionized form, the temper-
ature range in the case of reactions (3.21), would be above 150◦C. Therefore in combination
with the rate equations for oxygen adsorption we get

dNO

dt
= kO[S]p

1/2
O2
− k−ONO −

dNO−

dt
, (3.23a)

dNO−

dt
= kO−nsNO − k−O−NO− −

d[CO2(gas)]

dt
−
d[H2O(gas)]

dt
, (3.23b)

d[CH−3(ads)]

dt
= kCH4(1)[S]pCH4

−
d[CO2(gas)]

dt
−
d[H2O(gas)]

dt
, (3.23c)

d[CO2(gas)]

dt
= kCH4(2)[CH−3(ads)]N

2
O− , (3.23d)

d[H2O(gas)]

dt
= kCH4(3)[CH−3(ads)]NO− , (3.23e)

as reaction model for the methane adsorption, while [S] = [St] −NO −NO− − [CH−3(ads)]. In
these reactions hydrogen was involved as an reaction product, therefore subsequent reactions
fueled by adsorbed hydrogen may take place on the sensor surface. The production of humidity
could also influence the operation of the sensor in different ways than the reaction mechanisms
described above. It is debatable if these two factors should actually be considered when
devising a sensor model, as the resulting equations would be much more extensive.
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Hydrogen Sulfide (H2S)

Hydrogen sulfide, or reaction products stemming from its combination with other compounds,
is highly toxic to humans and also acts as an environmental pollutant. Therefore the detection
of this flammable gas is very important for environmental control.

H2S is known to react with pre-adsorbed oxygen in the manner of a typical reducing gas,
once it comes in contact with a SnO2 surface. [Liu et al. 2009] proposed different reaction
mechanisms, depending on the oxygen species currently predominating the sensor surface.

In temperatures below 150◦C the dominating molecular oxygen species O−2 leads to

H2S(gas) + O−2(ads)

kH2S(1)−−−−−→ SO2(gas) + H2(gas) + e− + S (3.24)

as a probable reaction mechanism. The corresponding rate equations, combined with the
reaction kinetics of oxygen adsorption of the molecular species, are

dNO2

dt
= kO2 [S][O2]− k−O2NO2 −

dNO−
2

dt
, (3.25a)

dNO−
2

dt
= kO−

2
nsNO2

− k−O−
2
NO−

2
−
d[SO2(gas)]

dt
, (3.25b)

d[SO2(gas)]

dt
= kH2S(1)[H2S]NO−

2
, (3.25c)

while the concentration of unoccupied surface sites [S] equates [St]−NO2
−NO−

2
.

The O− species on the surface at temperatures above 150◦C react with H2S according to

H2S(gas) + 2O−(ads)

kH2S(2)−−−−−→ SO2(gas) + H2(gas) + 2e− + 2S. (3.26)

When included into the reaction kinetics of oxygen adsorption it reads

dNO

dt
= kO[S][O2]1/2 − k−ONO −

dNO−

dt
, (3.27a)

dNO−

dt
= kO−nsNO − k−O−NO− −

d[SO2(gas)]

dt
, (3.27b)

d[SO2(gas)]

dt
= kH2S(2)[H2S](NO−)2, (3.27c)

while [S] = ([St]−NO −NO−).

In an elevated temperature range, where the doubly ionized oxygen species O−− is more
strongly present at the surface, the equation describing the interaction with H2S can be written
as

H2S(gas) + 2O−−(ads)

kH2S(3)−−−−−→ SO2(gas) + H2(gas) + 4e− + 2S, (3.28)
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which leads to the reaction rate equations

dNO

dt
= kO[S][O2]1/2 − k−ONO −

dNO−−

dt
, (3.29a)

dNO−−

dt
= kO−−n2

sNO − k−O−−NO−− −
d[SO2(gas)]

dt
, (3.29b)

d[SO2(gas)]

dt
= kH2S(3)[H2S](NO−−)2, (3.29c)

while [S] = ([St]−NO −NO−−).

In the work of [Malyshev and Pislyakov 1998] and [Kersen and Holappa 2006] the authors
proposed another chemical reaction equation as the driving force behind the interaction of
H2S and a metal oxide surface. The proposed reaction mechanism

H2S(gas) + 3O−−(ads)

kH2S(4)−−−−−→ SO2(gas) + H2O(gas) + 6e− + 2S (3.30)

includes the doubly ionized pre-adsorbed oxygen species O−− and takes place in a temperature
range well above 150◦C. The application of the Law of Mass action and the formulation of the
corresponding rate equation leads to

d[SO2(gas)]

dt
= kH2S[H2S](NO−−)3.

In combination with the rate equations for the adsorption of O−− this leads to

dNO

dt
= kO[S][O2]1/2 − k−ONO −

dNO−−

dt
, (3.31a)

dNO−−

dt
= kO−−n2

sNO − k−O−−NO−− −
d[SO2(gas)]

dt
, (3.31b)

d[SO2(gas)]

dt
= kH2S(4)[H2S](NO−−)3, (3.31c)

while [S] = [St]−NO −NO−− .

3.3.4 Oxidizing Gases

If a oxidizing gas Oxi(gas) reacts with the surface of a SnO2 semiconductor the basic reaction
is given by

Oxi(gas) + S + e−
kOxi−−−−−→ Oxi−(ads), (3.32)

where the oxidizing gas acts as an electron acceptor. Of course there may occur many more
complex interactions, depending on the oxidizing gas itself. The corresponding more compli-
cated reaction equations can be found in the subsections dedicated to the individual oxidizing

30



3.3 Extrinsic Surface States

gases.

In the above basic equation (3.32) kOxi denotes the rate constant for the Oxi−(ads) produc-
tion. Once again a reversion of this reaction is not likely, as denoted by the one sided arrow.
The electron needed for this reaction is taken from the conduction band of the SnO2 bulk
material, thus decreasing the overall conductance.

The application of the law of mass action leads to the rate equation for oxidizing gases,
which, in combination with the rate equations corresponding to oxygen (3.5), leads to

dNO

dt
= kO[O2]1/2[S]− k−ONO −

dNO−

dt
, (3.33a)

dNO−

dt
= kO−NO − k−O−nsNO− , (3.33b)

[Oxi−(ads)]

dt
= kOxi[Oxi]ns[S]. (3.33c)

Here once again the factor [S] = ([St]−NO−NO−− [Oxi−(ads)]) denotes the number of available
unoccupied surface sites for chemisorption, with [St] the total number of chemisorption sites
and NO, NO− and [Oxi−(ads)] the concentration of occupied surface states generated through
adsorbed oxygen in neutral and negatively charged form and the adsorbed ionized species
Oxi−(ads).

Nitrogen Dioxide (NO2)

As NO2 gas is one of the most dangerous air pollutants responsible for ozone and acid rain its
detection and screening is very important for environmental purposes.

The tin oxide surface reactions in the presence of nitrogen dioxide are somewhat more complex,
as there are several possibilities of interaction between the sensor surface and the oxidizing
gas not exclusively depending on temperature variation.

At temperatures below 200◦C the dominating oxygen species on the SnO2 surface is O−2 ,
which NO2 is unlikely to react with in a direct way, according to [Ruhland et al. 1998] and
[Ionescu et al. 2003]. The NO2 molecules therefore react directly with the surface tin ions and
get ionized themselves:

Ionosorption: NO2(gas) + S + e−
kNO2(1)−−−−−→ NO−2(ads), (3.34a)

Disintegration: NO−2(ads)

kNO2(2)−−−−−→ NO(gas) + O−(ads). (3.34b)

The electron in reaction (3.34a) can originate not only from the conduction band of the SnO2

bulk material but also from an already ionized O−2 species as the NO2 molecules forms sur-
face acceptor levels deeper than surface oxygen ions. This reaction leads to an decrease in
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conductivity as the height of the surface potential barrier is increased.

A direct reversal of reaction (3.34a) is unlikely but the adsorbed and ionized NO2 molecules
can be disintegrated into a desorbed NO and an ionized surface oxygen ion, as seen in equation
(3.34b). Because of this interaction the surface Fermi energy level is increased and the height
of the potential barrier at the surface is lowered leading to an increase in conductance.

By applying the law of mass action to the above equations we get

d[NO−2(ads)]

dt
= kNO2(1)ns[NO2][S]︸ ︷︷ ︸

Ionosorption

− kNO2(2)[NO−2(ads)]︸ ︷︷ ︸
Disintegration of NO2

,

with the concentration of unoccupied surface states [S].

Combining them with the rate equations for oxygen adsorption (in the molecular oxygen
species in this case) leads to the reaction kinetics

dNO2

dt
= kO2

[O2][S]− k−O2
NO2

−
dNO−

2

dt
, (3.35a)

dNO−
2

dt
= kO−

2
nsNO2

− k−O−
2
NO−

2
, (3.35b)

dNO

dt
= kO[O2]1/2[S]− k−ONO −

dNO−

dt
, (3.35c)

dNO−

dt
= kO−nsNO − k−O−NO− + kNO2(2)[NO−2(ads)], (3.35d)

d[NO−2(ads)]

dt
= kNO2(1)ns[NO2][S]− kNO2(2)[NO−2(ads)], (3.35e)

where the concentration of unoccupied surface sites [S] is denoted by ([St] − NO2 − NO−
2
−

NO −NO− − [NO−2(ads)]).

It is debatable if the attribution of the NO2 dissociation to the concentration of O− should be
taken into account, as the molecular oxygen species is dominant in this temperature range.

According to [Leo et al. 1999], the adsorption of NO2 onto the semiconductor surface can
go hand in hand with the disintegration of O−2 :

NO2(gas) + O−2(ads) + 2S + 2e−
kNO2

(3)
−−−−−→ NO−2(ads) + 2O−(ads). (3.36)

The nitrogen dioxide gets ionosorbed onto the surface and therefore occupies a chemisorption
site and extracts a conduction electron from the semiconductor. The O−2(ads) surface species
on the other hand disintegrates into two atomic ionized oxygen species, while consuming an
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conduction electron. This chemical reaction would lead to

d[NO−2(ads)]

dt
= kNO2(3)n

2
s[NO2]NO−

2
[S]2.

In combination with the equations pertaining to oxygen adsorption (in atomic and molecular
form, but both only singly ionized, i.e., α = 1) we get the kinetic equations to reaction (3.36),
which reads like

dNO2

dt
= kO2

[O2][S]− k−O2
NO2

−
dNO−

2

dt
, (3.37a)

dNO−
2

dt
= kO−

2
nsNO2 − k−O−

2
NO−

2
,−

d[NO−2(ads)]

dt
(3.37b)

dNO

dt
= kO[O2]1/2[S]− k−ONO −

dNO−

dt
, (3.37c)

dNO−

dt
= kO−nsNO − k−O−NO− ,+

d[NO−2(ads)]

dt

1/2

(3.37d)

d[NO−2(ads)]

dt
= kNO2(3)[NO2]n2

sNO−
2

[S]2 (3.37e)

for [S] = ([St]−NO2
−NO−

2
−NO −NO− − [NO−2(ads)]).

It is not clear if the disintegration of adsorbed molecular oxygen is in any way propelled by
the adsorption of NO2(ads), or if it takes place uninfluenced, as is expected in a temperature
region around 150 to 250◦C, where the dominance of oxygen species on a surface shifts from
molecular to atomic forms.

[Ionescu et al. 2003] suggested a reverse reaction instead of the disintegration of NO2(ads)

in equations (3.34) for temperatures above 240◦C. As we have done for oxygen we split the
ionosorption reaction into a chemisorption and ionization part:

Chemisorption: NO2(gas) + S
kNO2(3)



k−NO2(3)

NO2(ads), (3.38a)

Ionization: NO2(ads) + e−
kNO2(4)



k−NO2(4)

NO−2(ads). (3.38b)

[Ionescu et al. 2003] also based their model for oxidizing gases on these reaction equations, al-
though they used a combined reaction mechanism for chemisorption and ionization of nitrogen
dioxide. In combination with the reaction equations for oxygen adsorption this would lead to

dNO

dt
= kO[O2]1/2[S]− k−ONO −

dNO−

dt
, (3.39a)

dNO−

dt
= kO−nsNO − k−O−NO− , (3.39b)
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dNNO2

dt
= kNO2(3)[NO2][S]− k−NO2(3)NNO2 −

dNNO−
2

dt
, (3.39c)

dNNO−
2

dt
= kNO2(4)nsNNO2

− k−NO2(4)NNO−
2
, (3.39d)

with [S] = ([St]−NO−NO−−NNO2
−NNO−

2
), while NNO2

and NNO−
2
denote the concentration

of nitrogen dioxide adsorbed on the sensor surface in neutral and charged form.

At higher temperatures well above 250◦C the copious amounts of O− and the increasing
amount of trapped surface charge makes a sensor response similar to reducing gases possible,
[Ruhland et al. 1998]. This is because the potential barrier at the surface is raised along with
the surface charge, making an direct ionosorption of NO2 to the SnO2 surface unlikely. Which
results in

NO2(gas) + O−(ads)

kNO2
(5)

−−−−−→ NO(gas) + O2(gas) + S + e−, (3.40)

where NO2(gas) participated in an oxidizing reaction with O−(ads). The corresponding reaction
kinetics in combination with the rate equations for oxygen adsorption are therefore

dNO

dt
= kO[O2]1/2[S]− k−ONO −

dNO−

dt
, (3.41a)

dNO−

dt
= kO−nsNO − k−O−NO− −

d[NO2(gas)]

dt
, (3.41b)

d[NO2(gas)]

dt
= kNO2(5)[NO2]NO− , (3.41c)

while [S] = ([St]−NO −NO−).

As the above reaction is likely to deplete the concentration of O− on the surface, [Ruhland
et al. 1998] suggests a reaction mechanism like (3.34). This leads to the reaction kinetics

dNO

dt
= kO[S][O2]1/2 − k−ONO −

dNO−

dt
, (3.42a)

dNO−

dt
= kO−nsNO − k−O−NO− + kNO2(2)[NO−2(ads)], (3.42b)

d[NO−2(ads)]

dt
= kNO2(1)[NO2]ns[S]− kNO2(2)[NO−2(ads)], (3.42c)

when combined with rate equations for oxygen adsorption (3.5), with [S] = [St]−NO−NO−−
[NO−2(ads)].

Ozone (O3)

Although ozone is very important for the earth environment as it acts as a protective film in
the higher atmosphere, it is also an air pollutant in lower levels of the atmosphere and has
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harmful effects on the respiratory system of humans and animals.

In an ozone atmosphere the possible SnO2 surface reactions are

O3(gas) + S + e−
kO3

(1)
−−−−→ O−3(ads), (3.43a)

O3(gas) + S + e−
kO3

(2)
−−−−→ O2(gas) + O−(ads). (3.43b)

The first reaction is likely to occur in temperatures well below 150◦C, as suggested by [Gurlo
et al. 1998], while reaction (3.43b) happens in elevated temperatures above 150◦C, according
to [Naydenov et al. 1995]. This later reaction is attributed to the unstable character of ozone
in elevated temperatures, thus leading to the dissociative reaction in equation (3.43b).

If we once again include this two reactions into the reaction kinetics of oxygen adsorption
(in molecular and atomic form, depending on the temperature) we obtain

dNO2

dt
= kO2

pO2
[S]− k−O2

NO2
−
dNO−

2

dt
(3.44a)

dNO−
2

dt
= kO−

2
nsNO2 − k−O−

2
NO−

2
(3.44b)

[O−3(ads)]

dt
= kO3(1)pO3

ns[S] (3.44c)

[S] = [St]−NO2
−NO−

2
− [O−3(ads)] (3.44d)

as probable reaction kinetics for temperatures below 150◦C. The reaction kinetics for more
elevated temperatures (above 150◦C) are given by

dNO

dt
= kOp

1/2
O2

[S]− k−ONO −
dNO−

dt
, (3.45a)

dNO−

dt
= kO−nsNO − k−O−NO− +

[O3(gas)]

dt
, (3.45b)

[O3(gas)]

dt
= kO3(2)pO3

ns[S] (3.45c)

[S] = [St]−NO −NO− (3.45d)
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Chapter 4

The Combination of different types of
Surface Reaction Models and their
Solution

4.1 The Interlinking of Surface Reaction Models

In the previous chapter we derived a multitude of surface reaction models, while distinguishing
between intrinsic and extrinsic reactions. As intrinsic surface states arise from the dynamics
of the sensor alone they should be taken into account for all kind of measurements. Therefore,
for measurements in non-inert gases, it is necessary to combine the intrinsic and extrinsic
models to form a system of ordinary differential equations. The measurements as well as the
estimation of model parameters have to be carried successively from the intrinsic surface state
model to the surface reaction model for oxygen to mixtures of synthetic air and one test gas.
The different types of surface reaction models therefore form a hierarchy of models.

4.1.1 Intrinsic Model: Sensor response to an inert gas

To explain the response of a sensor in an atmosphere consisting of an inert gas the intrinsic
surface state model

dNsi
dt

= kins(Ni −Nsi)− k−iNsi (4.1)

was adopted. As the concentration of free electrons on the surface can be derived from the
concentration of all free electrons (i.e., donors) ND in the sensor and the height of the potential
barrier at the surface VS , the concentration of free surface electrons ns is given by (2.2)

ns = ND exp

(
− q2N2

s

2εNDkT

)
. (4.2)
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This equation can therefore easily be used to modify equation (4.1), to express ns as a function
of the occupied surface states Ns.

As the reaction rate constants vary with different temperatures, we assume that these
reaction rates are of a Arrhenius form. The empirical Arrhenius equation

kx = Ax exp

(
−Ex
kT

)
(4.3)

describes the dependence of rate constants kx, stemming of chemical reactions x, on the tem-
perature T and the activation energy Ex for reaction x. Ax denotes the pre-exponential
constant. The temperature-dependence of Ax can be neglected when compared to the expo-
nential dependence in the second factor. We apply equations (4.2) and (4.3) to the intrinsic
surface state model (4.1) and obtain

dNsi
dt

= Ai exp

(
− Ei

kT

)
ND exp

(
− q2N2

si

2εNDkT

)
(Ni −Nsi)

−A−i exp

(
−E−i

kT

)
Nsi,

(4.4)

which describes the response of a gas sensor to an inert atmosphere.

Independent of subsequent mechanisms for charge transport, this equation is comprised
of seven parameters, which need to be found—be it through a parameter estimation procedure
or by setting them to reasonable values found in the literature. These seven parameters are:
the density of ionized donors ND, the density of total intrinsic surface states Ni, the pre-
exponential constants A±i and the activation energies E±i.

4.1.2 Oxygen Model: Sensor Response to dry synthetic air

When describing the response of a sensor to an atmosphere of synthetic air (SA), additionally
to the rate equations (3.5) for oxygen adsorption, the intrinsic surface state mechanism has to
be taken into account. In this case the behavior of the sensor is due to the superimposition of
the intrinsic and extrinsic dynamics. Therefore, after applying Arrhenius equation (4.3) and
the formula for free surface electrons (4.2), the surface reaction model describing the sensor
response to air is given by

dNsi
dt

= Ai exp

(
− Ei

kT

)
ND exp

(
− q2N2

s

2εNDkT

)
(Ni −Nsi)

−A−i exp

(
−E−i

kT

)
Nsi,

(4.5a)
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dNO◦
β

dt
= AOβ exp

(
−
EOβ

kT

)
([St]−NO◦

β
−NO−α

β
)[O2]β/2

−A−Oβ exp

(
−
E−Oβ

kT

)
NO◦

β
−
dNO−α

β

dt
,

(4.5b)

dNO−α
β

dt
= AO−α

β
exp

(
−
EO−α

β

kT

)
ND exp

(
− q2N2

s

2εNDkT

)α
NO◦

β

−A−O−α
β

exp

(
−
E−O−α

β

kT

)
NO−α

β
,

(4.5c)

Ns = Nsi +NO−α
β
. (4.5d)

In this case, the density of occupied surface states Ns is the sum of all occupied surface
state—intrinsic and extrinsic. Therefore we can utilize relationship (4.5d) to express the height
of the potential barrier due to charged particles trapped at the surface as

VS =

q

(
Nsi +NO−α

β

)2

2εND
. (4.6)

By using relationship (4.2), the concentration of electrons ns able to reach the surface, depends
both on the intrinsic and extrinsic behavior of the sensor, and therefore couples the two
dynamics.

Additional to the parameters for the intrinsic model, the following parameters have to
be estimated: the concentration of all chemisorption sites on the surface [S], the two pre-
exponential factors and two activation energies for the reaction constants of the respective
oxygen chemisorption and ionization.

As the type of oxygen species adsorbed at the sensor surface acutely depends on the
ambient temperature, the parameters α and β have to be set to the appropriate numbers,
depending on the temperature. Below 150◦C singly ionized molecular oxygen is dominant,
therefore α and β should be set to 1 and 2, respectively. Above this temperature α = 1 and
β = 1 would be appropriate. Above 300 to 400◦C the singly ionized atomic oxygen species
usually gain an additional electron, which means α = 2 and β = 1. As the usual working
temperature of tin oxide gas sensors tend to be between 100◦ and 400◦C the setting of α = 1

and β = 1 would be appropriate.

4.1.3 Mixtures of oxygen and an additional gas

In order to model the sensor response to a reducing gas, like CO or an oxidizing agent like
NO2, in addition to synthetic air, a three step approach is taken. As a first and second step
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the model parameters and reaction constants for the intrinsic model and the oxygen surface
state model are estimated. In a third step the previously gained parameters were incorporated
into a whole equation model consisting of the reaction kinetics for the intrinsic surface states
and the oxygen surface states (already combined in equations (4.5)) in combination with the
model equations for the particular test gas. This necessitates that measurements are taken in
an inert atmosphere, in synthetic air as well as in a oxygen and test gas mixture under the
same temperature conditions for the same sensor.

In the case of carbon monoxide, the model equations (3.13) are added to (4.4) through the
relation of occupied surface states Ns = Nsi +NO− −NCO+ . As the equations (3.11) regard
the direct impact of CO on a gas sensor without an intermediate interaction with oxygen,
additional measurements of carbon monoxide in an inert atmosphere are needed to estimate
the corresponding model parameters.

For nitrogen dioxide there are a multitude of possible reactions depending on the temper-
ature. Also in this case the selected model equation (3.35), (3.37), (3.39), (3.41) or (3.42) can
be linked to the inert model (4.4) through the concentration of occupied surface states Ns.

4.2 Existence and Uniqueness of the Solution

In this section we will investigate the properties of the solution of the surface state models
consisting of ordinary differential equations. To accomplish this we will use the Theorem of
Picard-Lindelöf, in the usual and generalized version, which can be found in [Cronin 2008] and
[Kolgmogorov and Fomin 1970] respectively.

Theorem 4.1 (Picard-Lindelöf). Let (t0, x0) be in an open set D and let a, b be such
that the set R = {(t, x)| |t − t0| ≤ a, |x − x0| ≤ b} is constrained in D. Suppose the
function f(t, x) is defined and continuous on D and satisfies a Lipschitz condition with re-
spect to x on R. Then the IVP x′ = f(t, x), x(t0) = x0 has a unique solution on (t0 −
min(a, 1

b max(t,x)∈R |f(t, x)|), t0 + min(a, 1
b max(t,x)∈R |f(t, x)|)).

Proof A proof of this theorem can be found in [Cronin 2008]. �

Theorem 4.2 (Generalization of Picard-Lindelöf). Let U be an open subset of Rn+1 and
let the continuous function f be defined as f(t, x1, ·, xn) : U ⊂ Rn+1 → Rn. If (t0, x10, · · · , xn0) ∈
U and f satisfies the Lipschitz condition

|fi(t, x1, · · · , xn)− fi(t, x̃1, · · · , x̃n)| ≤ L max
1≤j≤n

|xj − x̃j |
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in the variables x1, · · · , xn ∈ U , with L a constant. Then the system of ordinary equations

dx1

dt
= f1(t, x1, · · · , xn),

...
dxn
dt

= fn(t, x1, · · · , xn)

with initial conditions x1(t0) = x10, · · · , xn(t0) = xn0 has an unique solution.

Proof A proof of this theorem can be found in [Kolgmogorov and Fomin 1970]. �

Based on these results we are able to proof the two important properties of existence and
uniqueness of the solution of the surface state models. To be able to more easily handle the
surface state model we decided to perform an normalization on the surface state densities Nsi,
NO◦

β
and NO−α

β
to gain the normalized surface state densities nNsi, nNO◦

β
and nNO−α

β
, which

was accomplished by using a normalization factor

α =
q√

2εNDk
(4.7)

to transform a densities X into its normalized form nX = αX = q X√
2εNDk

.

4.2.1 Intrinsic Model

In the following Lemma we will prove the existence as well as the uniqueness of the solution
to the inert surface state model (4.4) with the help of the Theorem of Picard-Lindelöf.

Lemma 1. Let a function f : I ⊂ R→ R , defined as

f(nNsi) = Ai exp

(
−Ei

kT

)
ND exp

(
−nN

2
si

T

)
(nNi − nNsi)−A−i exp

(
−E−i

kT

)
nNsi

for nonnegative parameters A±i, E±i and nNi, be C1 on D. When f builds the right hand side
of the ordinary differential equation d(nNsi)

dt = f(nNsi), then, for an initial value nNsi(0) =

nN0
si, the above differential equation possesses a unique solution.

Proof To derive an estimated upper bound for the function f we will first calculate the
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derivative with respect to nNsi

f ′(nNsi) = Ai exp

(
− Ei

kT

)
ND exp

(
−nN

2
si

T

)
(1− nNi)

2nNsi
T

−Ai exp

(
− Ei

kT

)
ND exp

(
−nN

2
si

T

)
−A−i exp

(
−E−i

kT

)
.

We use the maximum norm ‖nNsi‖∞ to get an upper bound for nNsi and can therefore
approximate the derivative of f as follows

∣∣f ′(nNsi)∣∣ ≤
∣∣∣∣∣Ai exp

(
− Ei

kT

)
ND −Ai exp

(
− Ei

kT

)
NDnNi

∣∣∣∣∣
∣∣∣∣2‖nNsi‖∞T

∣∣∣∣
−

∣∣∣∣∣Ai exp

(
− Ei

kT

)
ND −A−i exp

(
−E−i

kT

)∣∣∣∣∣ = L

from the approximation

exp

(
−nN

2
si

T

)
≤ 1

as nN2
si is significantly higher than the temperature of 700◦ K at most. This assumption is

justified as values for nNsi found in the literature are well above 60. Through the application
of the mean value theory we get for some fixed value ňNsi in the

f ′(ňNsi) =
f(nNsi)− f( ˜nNsi)

nNsi − ˜nNsi
⇒

∣∣∣f(nNsi)− f( ˜nNsi)
∣∣∣ ≤ L ∣∣∣nNsi − ˜nNsi

∣∣∣
for some constant L. We have therefore shown that f satisfies a Lipschitz condition on I,
which allows for the application of the Theorem of Picard-Lindelöf and prove the existence
and uniqueness of the solution to the initial value problem d(nNsi)

dt = f(nNsi). �

4.2.2 Oxygen Model

To prove the desired properties for the solution of the oxygen model, we can fall back on the
proof for the inert model, as the oxygen model incorporates the equation for inert surface
states as a third equation. The overall course of action for the oxygen model will essentially
be the same as for the intrinsic model, although we make use of the generalization of the
Picard-Lindelöf Theorem.
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Lemma 2. Let a function f : D ⊂ R4 → R3 , defined as

f1(nNsi) = Ai exp

(
− Ei

kT

)
ND exp

− (nNsi + nNO−α
β

)2

T

 (nNi − nNsi)

−A−i exp

(
−E−i

kT

)
nNsi,

f2(nNO◦
β
) = AOβ exp

(
−
EOβ

kT

)
([St]− nNO◦

β
− nNO−α

β
)[O2]β/2

−A−Oβ exp

(
−
E−Oβ

kT

)
nNO◦

β
−
dnNO−α

β

dt
,

f3(nNO−α
β

) = AO−α
β

exp

(
−
EO−α

β

kT

)
ND exp

− (nNsi + nNO−α
β

)2

T

α

nNO◦
β

−A−O−α
β

exp

(
−
E−O−α

β

kT

)
nNO−α

β
,

for nonnegative parameters A±x, E±x and nNi, be C1 on D. Let the function f build the right
hand side of a system of ordinary differential equations

d(nNsi)

dt
= f1(nNsi),

d(nNO◦
β
)

dt
= f2(nNO◦

β
),

d(nNO−α
β

)

dt
= f3(nNO−α

β
).

(4.8)

Then, for some initial values, the above differential equation possesses a unique solution.

Proof First we define the vector nN ∈ D as (nNsi, nNO◦
β
, nNO−α

β
)>. After calculating

∇nNfi = ( ∂fi
∂nNsi

, ∂fi
∂nNO◦

β

, ∂fi
∂nN

O
−α
β

)> for i = 1, 2, 3 we use the same approach as in the previous

proof to gain an upper bound Lji for every single partial derivative ∂fi
∂nNj

for j = si, O◦β , O−αβ .
This leads to

|∇nNfi(nNsi, nNO◦
β
, nNO−α

β
)| ≤ Li,

for Li = (Lsii , L
O◦
β

i , L
O−α
β

i )>. We can therefore use the mean value theorem for real valued
functions in several variables to gain

fi(nN)− fi(ñN) = ∇nNfi(ňN)(nN − ñN) ≤ Li(nN − ñN)
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for some vector ňN ∈ nNñN while nN , ñN , ňN ∈ D. It follows easily that

|fi(nN)− fi(ñN)| ≤ |Li(nN − ñN)| ≤ max
j
Lji (max

j
|nNj − ˜nNj |)

for i = 1, 2, 3. Hence we can use the Generalized Theorem of Picard Lindelöf to prove the
existence and uniqueness of the solution to the system of ordinary differential equations (4.8).�
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Chapter 5

Parameter Estimation for Dynamic
Models

In this chapter we will deal with the theory behind the estimation of parameters for the type
of models relevant to simulate surface reactions—parameter dependent ordinary differential
equations. These mathematical models describe the chemical processes on the surface and thus
explain the behavior of the observed data. The unknown model parameters will be obtained by
minimizing a suitable objective function, which is a measure of the deviation of the data from
the model, i.e., the lack of fit. For a survey of parameter estimation for differential equations
the reader is referred to [Bard 1974], while [Engl et al. 2009] gives a more general review of
inverse problems in applications.

5.1 Structure and Challenges of Dynamical Models

In general, the model equations can be written in the form

dx(t)

dt
= f(x(t),u;θ) with x(t0) = x0, (5.1a)

y(t) = g(x(t);θ), (5.1b)

where the included variables and relations are defined as follows:

θ = (θ(1), θ(2), . . . , θ(P ))> is the vector of unknown parameters, which are quantities like
Ai, Ei or Ni in (4.4), that have to be estimated. In this set of parameters some may
appear only in equation (5.1a) and others only in equation (5.1b).

t vector of independent variables—e.g., the time.

u is a vector of variables which are either precisely known or have been measured, e.g.,
quantities like the Boltzmann constant k.
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x = (x(1), x(2), . . . , x(M))> defines a vector of state variables, which are functions of t and
θ, for example Ns. These functions are determined through the ordinary differen-
tial equation (5.1a). In a special case the state variables are variables that can be
measured through experiments and are therefore observed variables.

x0 is a vector of initial conditions for the state variables.

f defines the M -dimensional vector function forming the right side of the differential
equation of state variables.

y = (y(1), y(2), . . . , y(L))> is the set of observed variables that are measured experimen-
tally, like the conductance G.

g is a known L-dimensional vector function that relates the state vector x to the output
vector of observed variables y—e.g., the conductance formula (2.14).

Experiments measure the value of y for given values of t, which permits the calculation of
the values of the state variables x but usually not allow for the calculation of the values of the
derivative of x. In this case the model equations cannot be used directly for the estimation of
the parameters θ. [Bard 1974] lists ways to overcome this problem:

(1) Differentiation of Data: To calculate approximate values of the derivative of x in the
model equation by calculating a difference quotient between adjacent values. Then
xn+1−xn
tn+1−tn can give an approximation for dxn

dt . This method is of limited accuracy, it is
difficult to access the errors and it is furthermore only applicable if the separation be-
tween data points in not too large.

(2) Integration of Equations: Depending on the fact if the model equation can be solved ana-
lytically or just numerically, the integration of the differential model is a possible way to
gain an equation in the form of

x = h(t;θ).

If equation (5.1a) can be solved analytically, h can be explicitly given, while for the case
that only numerical integration is possible, h is only implicitly defined.

(3) Integration of Data: If it is possible to integrate out all the derivatives in the differential
equation one gains integral equations. The data may therefore be integrated numerically
to obtain the values for the integrals appearing in the model equation. Like for method
(1), the data is required to be dense and it is generally only applicable to a limited num-
ber of cases, although numerical integration is in general more accurate than numerical
differentiation.
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Overall, [Bard 1974] recommends to integrate the model equation when computationally pos-
sible, and to fall back on the manipulation of data through integration or differentiation if one
only wants to obtain an initial guess.

5.1.1 Computation of the objective function

To estimate the parameters θ we must be able to compute the objective function for any given
value of parameters. This usually works by use of some initial estimates for the parameters
to gain the initial values in (5.1a). An integration of the differential equation in (5.1a) is
therefore possible and gain the values xi, i = 1, . . . , N of state variables, for N the number of
measurements or data points. Equation (5.1b) is then used to calculate values of y, which then
determine the residuals ei = ŷi− y, the difference of measured value ŷi and model calculated
value yi. The residuals are then used to calculate the objective function to facilitate the
process of parameter estimation. Each function evaluation is therefore in itself a complex
procedure that requires the solution of a set of ordinary differential equations, which may be
accomplished by the use of standard methods [Bard 1974].

5.1.2 Optimization Methods

To minimize the objective function, like the nonlinear least squares objective function (5.2), a
multitude of optimization algorithms may be used. Essentially all these algorithms adhere to
the same working principle. These iterative methods start at an initial value for the parameter
and iteratively compute a new value while following a rule of calculation, until a minimum
is reached. The algorithms find iteratively a new value θ(j+1) to the current value θ(j) by
moving it along a specified search direction d(j) for a certain amount s(j):

θ(j+1) = θ(j) + s(j)d(j).

A stopping rule is usually incorporated to specify when the algorithm has found a sufficiently
close enough estimation for θ̆, the minimum of the objective function Q(θ). Different al-
gorithms are characterized by their different choices for s(j) and d(j), although the search
direction usually in some form incorporates the gradient of the objective function. We set
g(θ) to the gradient ∇θQ(θ) of the objective function and denote g(j) = g(θ(j)). Furthermore
we define H(j) as the Hessian matrix of Q(θ) evaluated at θ(j).

Steepest Descent Method. This method, also called gradient descent, calculates the parameter
values by iterating into the opposite direction of the gradient:

θ(j+1) = θ(j) −
g>(j)g(j)

g>(j)H(j)g(j)

g(j).
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This method is often very inefficient and is not recommended for applications. The
steepest descent algorithm may have problems for objective function that, for example
are flat around the minimum, as the algorithm may iterate back and forward in this plane
when following the inverse direction of the gradient. This problem can be avoided by
using the following algorithm.

Newton’s Method. This historic algorithm operates by linearizing the objective function and
therefore iteratively using the roots of the gradient as an approximation to the root of the
objective function:

θ(j+1) = θ(j) −H−1
(j)g(j).

This Algorithm may lead in a false direction when the Hessian is not positive definite, for
example when the objective function is concave at θ(j).

Gauss-Newton Algorithm. By using Newton’s Method as a basis and utilizing a quadratic
approximation instead of the objective function in every iteration the Gauss-Newton Al-
gorithm reads like

θ(j+1) = θ(j) + (∇θ(j)
y(θ(j))

>∇θ(j)
y(θ(j)))

−1∇θ(j)
y(θ(j))(θ̂ − y(θ(j))).

The approximation to the Hessian that is used in this algorithm is guaranteed to be posi-
tive definite and this method avoids therefore the computation of second order derivatives.

Levenberg-Marquardt Algorithm. This method combines the Gauss-Newton Algorithm with a
regularization technique of the Hessian that insures decreasing objective function values.
As to insure the positive definiteness of the Hessian H(j) it is possible to correct the
inverse of the Hessian at each step by adding a correction matrix to gain a corrected
inverse Hessian H̄−1

(j) for further computations, such that

H̄
−1
(j) = H−1

(j) + c(j)I,

for an appropriate c(j) ∈ R+.

Quasi-Newton Method. This method is an advancement of Newton’s Method, as it calculates
the inverse of the Hessian H−1

(j) by iteratively adding a symmetric correction matrix C(j),
such that

H̄
−1
(j) = H−1

(j) +C(j).

Prominent examples of Quasi-Newton Methods are the BFGS and DFP algorithm, which
differ in the form of the correction matrix.
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A more detailed discussion to the above algorithms, especially regarding their computational
restrictions or their suitability to specific problems, can be found in [Björck 1996].

Nevertheless, essentially almost any optimization method may be used to minimize the
objective function Q(θ). Although, according to [Bard 1974], the Gauss-Newton Method is the
most suitable algorithm to solve dynamic models. This is because, as every function evaluation
requires the integration of equations (5.1a), the use of a quadratically convergent method like
the Newton-Gauss Algorithm is favorable.

5.2 The Objective Function and Nonlinear Least Squares

Estimators

The majority of estimation methods found in Estimation Theory, like maximum a posteriori
probability or minimum variance estimation, require statistical knowledge of all or at least
some of the random variables involved in a model. The Maximum Likelihood Estimation
for example, demands at least knowledge of the probability density of the observation errors,
while assuming the statistical properties of the parameters to be estimated are not known. If
however no probabilistic information about any of the variables of the models is known, this
extreme case, in terms of Estimation Theory, is handled by finding the least squares fit among
the observations.

As the objective function is a suitable measure of the overall deviation of the model calcu-
lated values from the measurements, its choice dictates not only the values of the parameters
but also their statistical properties, [Englezos and Kalogerakis 2001].

We will therefore express the objective function of a parameter estimation problem, that
is to be minimized, in terms of Least Squares Estimators. The Least Squares Technique (LS)
is one of the most used estimation technique for various applications and can firstly be divided
into linear or Ordinary Least Squares (OLS) and Nonlinear Least Squares (NLS). In this
section we will mainly concentrate on the nonlinear variant NLS, as the equation occurring
in dynamic models are highly nonlinear. Therefore we will use the works of [Englezos and
Kalogerakis 2001; Kuan 2004] and [Davidson and MacKinnon 1993] as guide.

The least squares objective function

Q(θ) =

N∑
i=1

ei(θ)>Wiei(θ) (5.2)

for the number of measurements N . It is given by the sum of squares of the residuals ei(θ) with
respect to θ. The residual equals the difference between measurements and model calculated
values of observable variables y (an exact definition will be given below). Depending on the
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choice of weighting matrix Wi there are several different cases of estimators:

(1) Simple Least Squares (SLS) Estimation. In this case the sum of squares of errors is mini-
mized without a weighting factor. Therefore equation (5.2) reduces to

Q(θ) =

N∑
i=1

ei(θ)>ei(θ),

as the weighting matrix can be set to identity, i.e., Wi = I.

(2) Weighted Least Squares (WLS) Estimation. If the weighting matrix does not change for
different experiments (Wi = W for i = 1, 2, . . . , N), the estimator

Q(θ) =

N∑
i=1

ei(θ)>Wei(θ)

is referred to as Weighted Least Squares.

(3) Generalized Least Squares (GLS) Estimation. When the weighted sum of squares of er-
rors is estimated with different weights in every experiment the LS estimator is called
Generalized Least Squares Estimator.

For all the above cases, the choice of weighting matrix W can be facilitated by Maximum
Likelihood considerations, as can be seen in [Englezos and Kalogerakis 2001]. We will now
have a closer look at the simple nonlinear least squares estimation.

5.2.1 Nonlinear Least Squares Estimation

For simplification we assume the univariate case, regarding the observed variables. We consider
y to be a scalar and L to be therefore zero. The N distinct measurements of the output vector
ŷ are related to the value, calculated through the model equation y, using true parameter
values θ̂, in the following way:

εi = ŷi − y(ti; θ̂) for i = 1, . . . , N, (5.3)

while the error term εi accounts for the measurement error and model inadequacies. Therefore,
the output vector ŷ is comprised of the deterministic part calculated by the model and the
stochastic part given by the error term. To quantify the deviation of an individual measurement
from the model calculated value we state:

Definition (Residual) The residual of a Nonlinear Least Squares estimator is defined as

ei = ŷi − y(t;θ),
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where the model function y(t,θ) is evaluated with the use of the estimated parameter values.

To clarify the distinction between the residual and the error term: While the residual ei
corresponds to the estimated parameter values θ, the error term εi refers to the true parameter
values θ̂.

Given the number of measurements N of y and t we combine all measurements into one
vector and adopt the notation

ŷ = y(t1, . . . , tN ;θ) + e(θ),

for ŷ = (ŷ1, . . . , ŷN )>, e = (e1, . . . , eN )> and y(t1, . . . , tN ;θ) = (y(t1;θ), . . . , y(tN ;θ))>.

To estimate the parameter vector θ we can minimize the LS objective function

Q(θ) =
1

N
(ŷ − y(t1, . . . , tN ;θ))>(ŷ − y(t1, . . . , tN ;θ))

=
1

N

N∑
i=1

(ŷi − y(ti;θ))2,
(5.4)

which is given by the weighted sum of squares of the residuals (i.e., the sum of squares error),
with respect to θ.

Our goal is tho find a K-dimensional surface that fits the data (ŷi,xi), for i = 1, . . . , N .
The first order condition of the NLS optimization problem is a system of nonlinear equations
with K unknown parameters. We define ∇θy(t1, . . . , tN ;θ) = (∇θy(t1;θ), . . . ,∇θy(tN ;θ))

as the gradient of y and can therefore state the first order optimality condition

∇θQ(θ) = − 2

N
∇θy(t1, . . . , tN ;θ)(y − y(t1, . . . , tN ;θ) = 0. (OC-1)

Additionally we define the second order optimality condition as

∇2
θQ(θ) =− 2

N
∇2
θy(θ)(ŷ − y(t1, . . . , tN ;θ))

+
2

N
∇θy(t1, . . . , tN ;θ)∇θy(t1, . . . , tN ;θ)> is positive definite.

(OC-2)

We now can state the definition of a minimizer to the objective function.

Definition (Least Squares Estimator) The estimated parameter value θ̂ that minimizes
the sum of squares error (5.2), by solving (OC-1) and satisfying (OC-2), is defined as the
Least Squares Estimator and is denoted as θ̆.

Theorem 5.1. Let y(x; ·) be twice continuously differentiable in the second argument. Given
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the minimization problem

ŷ = y(t1, . . . , tN ;θ) + e(θ)

we suppose that for given data (ŷi,xi), i = 1, . . . , N , the second order condition (OC-2) holds
for some interior point of Θ. Then there exists a solution that minimizes the NLS objective
function (5.4).

While the second order optimality condition ensures that a minimum of S can be found,
it is no guarantee to the uniqueness of the solution. This infers the possibility of the existence
of multiple local minima for a given data set in the NLS minimization problem. From the first
order condition we saw that

∇θQ(θ̆) = − 2

N
∇θy(t1, . . . , tN ; θ̆)e(θ̆) = 0

Therefore, the residual vector is orthogonal to the column vectors of ∇θ̆y(t1, . . . , tN ; θ̆)>. In
a geometric sense y(t1, . . . , tN ;θ) defines a surface on Θ and ∇θy(t1, . . . , tN ;θ)> defines a K-
dimensional linear subspace tangent at the point y(t1, . . . , tN ;θ) for any θ ∈ Θ. Therefore the
vector of observables ŷ is orthogonally projected onto the mentioned surface at y(t1, . . . , tN ; θ̆),
which means that the residual vector e is orthogonal to the tangent space at this point. As, in
contrast to the linear case—there may exist more than one such orthogonal projections, there
may be multiple solutions to the Nonlinear Least Squares problem.

5.2.2 Consistency of the Nonlinear Least Squares Estimator

A sequence of estimators θ̆ for a parameter θ0 is said to be (asymptotically) consistent, if θ̆
converges in probability to θ0. This implies that the distributions of the estimators become
more and more concentrated near the true value of the parameter being estimated. In this case
the probability that the estimator θ̆ is arbitrarily close to θ0 converges to one. The definition
of this idea is given by

Definition (Consistency) A sequence of NLS estimators θ̆N for N ≥ 0 is called strongly

(weakly) consistent for the parameter θ0 if θ̆N
a.s.(P)−−−−→ θ0 as N →∞.

We first have to give some basic definitions about statistical convergence and the laws of
large numbers to facilitate a proof of the consistency of a NLS estimator.

Definition (Stochastic Convergence) Let (tn)n≥0 be a sequence of random variables.

(i) The sequence tn converges in probability towards t (tn
P−→ t), if for all ε > 0

lim
n→∞

P(|tn − t| ≥ ε) = 0.
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(ii) The sequence tn converges almost surely towards t (tn
a.s.−−→ t), if

P( lim
n→∞

tn = t) = 1.

(iii) The sequence tn converges in distribution towards t (tn
D−→ t), if for Fn and F the

cumulative distribution functions of tn and t, if

lim
n→∞

Fn(x) = F (x),

for some x ∈ R, for which F is continuous.

Convergence in probability ensures that the probability of an unlikely outcome becomes smaller
and smaller as n grows. Almost sure convergence implies convergence in probability. Stochastic
Convergence also introduces a new concept of boundedness, as seen in the following definition.

Definition (Stochastic Boundedness) A sequence of random variables (tn)n≥0 is bounded
in probability, if tn

P−→ 0 or if for every ε > 0 there is a δ <∞ such that P(|tn| ≥ δ) < ε.

Next we will briefly discuss the Law of Large Numbers (LLN), which concerns the aver-
aging behavior of random variables. There are various types of Laws of Large Numbers for
different types of random variables (details can be found in [Kuan 2004]). We will deal with
the most elemental of definitions.

Lemma 3 (Law of Large Numbers). The Strong (Weak) Law of Large Numbers states
that the sample average of the sequence tn converges almost surely (in probability) to the

expected value t, that is t̄n
a.s.(P)−−−−→ t.

To apply the idea of a Law of Large Numbers to not only random variables, but functions of
random variables, a Uniform Law of Large Numbers (ULLN) is needed.

Lemma 4 (Uniform Law of Large Numbers). Let Q(θ) be a function of θ ∈ Θ. When
the conditions

(1) Q(θ) obeys a Strong (Weak) Law of Large Numbers for each θ ∈ Θ,

(2) for θ,θ† ∈ Θ:

(i) |Q(θ −Q(θ†)| ≤ C||θ − θ†|| a.s.,

(ii) for C, a random variable which is bounded almost surely (in probability) and is not
dependent on θ,

are met, the function Q(θ) is said to obey a Strong (Weak) Uniform Law of Large Numbers,
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which in turn, is defined as

sup
θ∈Θ
|Q(θ)− E(Q(θ))| a.s.(P)−−−−→ 0.

Proof A way to derive the property of an Uniform of Large Numbers for a function obeying
the above assumption, is shown in [Kuan 2004]. For details and discussion about the necessity
of different assumptions for the strong and weak case of the theorem, we also refer to [Kuan
2004]. �

To show the consistency of the NLS estimator we have to introduce one last inequality.

Lemma 5 (Markov’s inequality). Let t be a random variable with finite pth moment. Then
Markov’s inequality states that

P(|t| ≥ a) ≤ E(|t|p)
ap

for a ∈ R+.

Theorem 5.2 (Consistency). Let y(x; ·) be twice continuously differentiable in the second
argument. In addition to the the second order condition (OC-2) let us assume the conditions

[C1] Let θ be in Θ, a compact and convex set, then

(i) the sequences (ŷ2
i )i≥0, (ŷiy(ti;θ))i≥0 and (y(ti;θ)2)i≥0 all obey a weak law of large

numbers for each θ ∈ Θ,

(ii) ŷi, y(ti;θ) and ∇θy(ti;θ) have bounded second moment uniformly in θ ∈ Θ,

[C2] There exists a unique parameter vector θ0 such that E(Q(θ)) attains its unique global
minimum at θ0.

hold. Then the NLS estimator θ̆ is weakly consistent for θ0.

For an detailed discussion of the conditions [C1] and [C2] the interested reader is referred to
[Kuan 2004].

Proof As the condition [C1](i) assures that all components of the NLS objective function
Q(θ) = 1

N

∑N
i=1(ŷ2

i − 2ŷiy(ti;θ) + y(ti;θ)2) obey a weak law of large numbers, the first
requirement for an ULLN is satisfied.

As our parameter space Θ is compact and convex we use the mean-value theorem as well
as the Cauchy-Schwartz inequality to establish the Lipschitz-like continuity condition

|Q(θ)−Q(θ†)| ≤ ‖∇θQ(θ̄)‖‖θ − θ†‖ a.s.,
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5.2 The Objective Function and Nonlinear Least Squares Estimators

with θ,θ† ∈ Θ and θ̄ their mean value. Therefore we set the Lipschitz-type constant to

C = sup
θ∈Θ
∇θQ(θ).

Hence we have to prove that ∇θQ(θ) = − 2
N

∑N
i=1∇θy(ti;θ)(ŷi − y(ti;θ)) is bounded in

probability. To this end we use condition [C1](ii) to gain

P(|∇θQ(θ)| ≥ a) ≤ 1

a
E(|∇θQ(θ)|)

≤ 2

aN

N∑
i=1

(‖∇θy(ti;θ)‖‖ŷi‖+ ‖∇θy(ti;θ)‖‖y(ti;θ)‖

≤ D,

for some constant D independent of θ. This relation implies that ∇θQ(θ) is bounded in
probability by Markov’s inequality. Therefore we have shown the second condition for an
ULLN.

Condition [C2] requires θ0 to be a global minimum of E(Q(θ)). Therefore Q(θ) has a
WULLN effect, that is

sup
θ∈Θ
|Q(θ)− E(Q(θ))| P−→ 0.

As E(Q(θ)) is continuous on the compact set Θ, we set θ0 as the unique, global minimum
of E(Q(θ)). Furthermore, as θ̆ is the NLS estimator we can write

Q(θ̆) = inf
Θ
Q(θ).

Let T be an open neighborhood of θ0, then we set

ε = inf
θ∈TC∩Θ

E(Q(θ))− E(Q(θ0)). (5.5)

Let A be the event “ |E(Q(θ))−Q(θ)| < ε/2 for all θ”. Then

A⇒ Q(θ̆) > E(Q(θ̆))− ε/2 (5.6)

and

A⇒ E(Q(θ0)) > Q(θ0)− ε/2. (5.7)
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Because of Q(θ̆) ≤ Q(θ0), we can derive from (5.6) that

A⇒ Q(θ0) > E(Q(θ̆))− ε/2. (5.8)

which in turn implies, with the help of equations (5.7) and (5.8), that

A⇒ E(Q(θ0)) > Q(θ0)− ε/2 > E(Q(θ̆))− ε

⇒ E(Q(θ̆))− E(Q(θ0)) < ε = inf
θ∈TC∩Θ

E(Q(θ))− E(Q(θ0))

⇒ E(Q(θ̆)) < inf
θ∈TC∩Θ

E(Q(θ))

⇒ θ̆ ∈ Θ.

(5.9)

We therefore see that A ⇒ θ̆ ∈ T , from which we can conclude that P(A) ≤ P(θ̆ ∈ T ). And
as the WULLN property of Q(θ) implies that limP(A) = limP(|Q(θ)− E(Q(θ))| < ε/2) = 1,
we see that limP(θ̆ ∈ T ) = 1. As B was arbitrary, θ̆ must converge to θ0 in probability. �

As the above theorem is concerned with the convergence to a global minima instead of
a local one, it is not completely satisfactory. This is because an iterative algorithm can, in
general, only be expected to find local minima. According to [Kuan 2004], a simple proof
for local consistency is not yet available, so they only state that the Nonlinear Least Squares
Estimator converges in probability to a local minimum.

5.2.3 Asymptotic Normality

Definition (Asymptotic Normality) An estimator θ̆ that is consistent for θ0, is asymp-
totically normal if the sequence of random variables (

√
N(θ̆−θ0))N≥0 tends in distribution to

a normal distribution with zero mean an finite covariance matrix for growing sample size N .

To prove asymptotic normality we also need the Central Limit Theorem (CLT). If a CLT
holds, the distributions of suitably normalized averages of random variables are close to the
standard normal distribution in the limit, regardless of the original distributions of these
random variables. As for the Law of Large Numbers there are different CLTs for different
kinds of random variables, [Kuan 2004].

Lemma 6 (Central Limit Theorem). The Central Limit Theorem states for the sample
average t̄n of a sequence of random variables tn with mean µ and variance σ2 > 0 that

√
N(t̄n − µ)

σ

D−→ N (0, 1).
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Theorem 5.3 (Asymptotic Normality). Let θ be consistent for θ0. In addition to the the
first and second order conditions (OC-1) and (OC-2) let us assume the following conditions
hold

[N1] The sequence (∇2
θQ(θ))N≥0 obeys a WULLN.

[N2] E(∇2
θQ(θ)) is continuous in θ.

[N3] The sequence (
√
N∇θQ(θ))N≥0 obeys a CLT.

Then the NLS estimator θ̆ is asymptotically normal.

Proof We first use the mean value theorem to expand ∇θQ(θ̆) about θ0 to gain

∇θQ(θ̆) = ∇θQ(θ0) +∇2
θQ(θ†)(θ̆ − θ0),

with θ† the mean value of θ̆ and θ0. As θ̆ is the NLS estimator and solves the first order
condition (OC-1), the left hand side must be zero. As the second order condition holds, the
Hessian is invertible and therefore

√
N(θ̆ − θ0) = −∇2

θQ(θ†)−1
√
N∇θQ(θ0).

Which implies that
√
N(θ̆− θ0) and the right hand side are of the same distribution. Let A⊥

denote the vector formed by adjoining the rows of the matrix A to each other. Therefore

‖(∇2
θQ(θ†)) ⊥ −(E(∇2

θQ(θ0)))⊥‖

≤ ‖(∇2
θQ(θ†))⊥ − (E(∇2

θQ(θ†)))⊥‖

− ‖(E(∇2
θQ(θ†)))⊥ − (E(∇2

θQ(θ0)))⊥‖,

(5.10)

according to the triangle equation. Because of ∇2
θQ(θ) obeying a WULLN, the first term in

(5.10) converges to zero in probability. The consistency of θ̆ also implies that the mean value
θ† converges to θ0 in probability. This, given condition [N2] holds, implies that the second
term of relation (5.10) also converges to zero in probability, which implies that ∇2

θQ(θ†))
P−→

E(∇2
θQ(θ0)) and that

√
N(θ̆−θ0) is of the same distribution as −E(∇2

θQ(θ0))−1
√
N∇θQ(θ0).

As, according to [N3],
√
N∇θQ(θ0) obeys a CLT, we have(√

Var(
√
N∇θQ(θ0))

)−1√
N∇θQ(θ0)

D−→ N (0,1),

which in turn implies(√
V 0

)−1√
N(θ̆ − θ0)

D−→ N (0,1)
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for V 0 the covariance matrix (For details regarding the composition of the covariance matrix,
see [Kuan 2004; Davidson and MacKinnon 1993]). We have therefore shown that

√
N(θ̆− θ0)

follows a zero mean normal distribution. �
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Chapter 6

Quantitative Analysis and Simulation

We will now have a closer look at the behavior of the inert gas model (4.4) in combination
with the conductance formulas (2.14) stated in Chapter 2. We will consider the equations in
the normalized form, after applying the normalization factor α from equation (4.7), as shown
in Chapter 4. The model equations therefore read as

d(nNsi)

dt
= Ai exp

(
− Ei

kT

)
ND exp

(
−nN

2
si

T

)
(nNi − nNsi)−A−i exp

(
−E−i

kT

)
nNsi,

(6.1a)

G (T, Vs) =

G
∗
0T
−3/2 (1− βnNs) exp

(
− γ
T

)
complete depletion of electrons,

G∗0T
−3/2 exp

(
−nN

2
s

T

)
partial depletion of electrons,

(6.1b)

while some factors in the conductance formula for the completely depleted case where combined
into the parameters β and γ, as was recommended by [Fort et al. 2010]. Also the temperature
dependence of the pre-exponential factor G0 was expressed separately.

We decided to not make use of the additional term GC in the conductance models (2.14)
while estimating the model parameters, as the corresponding values for GC reported in the
work of Fort et al. were generally very small.

6.1 Description of Data

The data, which was graciously provided by the Austrian Institute of Technology (AIT), was
derived by measuring the change in voltage for a constant current of 1 nA generated by a
bundle of nanowires acting as sensing element. The measurements where taken in a dry

59
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nitrogen atmosphere, while the temperature was changed. The corresponding temperature
profile can be seen in Figure 6.1.
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Figure 6.1: Plot of the measured conductance G and the associated temperature profile.

The response of the sensor to the temperature profile, conforms to the intrinsic surface state
trapping model of Ding et al., which was discussed in Chapter 3.2.

The steep drop in conductance, as a reaction to a decrease in temperature, is a consequence
of the fast dynamic process of electrons dropping from the conduction band into the valence
band. As the release of electrons from occupied intrinsic surface states into the conduction band
is a slower dynamic process, the conductance slowly increases again after every temperature
drop until either thermal equilibrium is reached or another temperature drop occurs.

As the data shows the response of a bundle of nanowires to an inert atmosphere the model
equations (6.1) are applicable.

6.2 Calculation of nNs from measured data

The preliminary calculation of surface states nNs from the measured sensor conductance is
conducted essentially through formula

I =
n · q
t
,

which states that the current depends on the flow of charge through the conducting channel.
I states the current in Ampere, n is the number of charge carriers and t denotes the time (in
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seconds) over which the flow occurs. As a constant current is applied to the sensor during
measurements, the in-/decrease in the measured conductance is caused by the trapping and
releasing of electrons in/from surface states.

As the current was set to a constant 1 nA and a change in conductance was observed
during measurements, it is assumed that a part of the current was produced by the change
in the surface state density. This part of current is proportional to the measured change in
conductance. Thus it is possible to deduce the part of current and therefore the number of
electrons stemming from a change in the intrinsic surface states density which caused the
measured change in conductance:

ns =
Gt+1/Gt · I · t

q
=
b · 10−2 · 10−9 · t

q

with t the time interval over which the change in conductance Gt+1/Gt = b% occurred. As the
concentration of free surface electrons ns is given by bulk electrons ND energized enough to
overcome the surface potential barrier Vs, with the help of equations (2.2) and (2.10), equation

ns = ND exp

(
−nN

2
s

T

)
⇒ nNs =

√
−T log

(
b·t·10−11

q ND

)
q

(6.2)

allows us to calculate the number of occupied surface states form the measured conductance.
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Figure 6.2: A picture showing the form of the normalized surface states calculated through the
current flow equation (6.2).

61



Chapter 6 Quantitative Analysis and Simulation

The occupied surface states calculated in that manner, follow changes in the sensor con-
ductance very closely. Which also implies that the nNs would react to abrupt changes in
temperature as swiftly as the conduction does. This indicates a different behavior of nNs than
Ding et al. predicted.

The parameters for the conductance formulas of (6.1b) where estimated by fitting a nonlin-
ear least squares error in the cases of complete and partial depletion. The resulting parameters
are shown in Table 6.1.

Case of carrier depletion Parameters G∗0 β γ

Complete depletion
Values

1.396e+02 1.050e−02 3.306e+03
Partial depletion 1.952e+03

Table 6.1: Conduction parameter sets for the cases of partial and complete depletion.

The conductance parameters in Table 6.1 were then used to calculate the normalized
surface state densities nNs for both cases of charge depletion from the measured conductance
G.

The first plot in Figure 6.3 refers to the density of normalized surface states calculated
under the assumption of a complete depletion of charge carriers throughout the nanowires. In
this case the nNs behave quite similar to the normalized surface states calculated through the
current flow formula (6.2). This is due to the fact that the second term in

nNs =
1

β

(
1− exp

(
γ

T

)
G

G0
T 3/2

)
, (6.3)

which was derived from (6.1b), dictates a form negative to the conductance for the nNs.
This also implies the immediate response of nNs to changes of temperature, which does not
conform to the intrinsic surface state trapping model of Ding et al. If one would consider the
approximate real values for the parameters β and γ (which would be of order 10−6 and 1011

respectively), no plausible values for nNs would be reached, as the second term in (6.3) would
be too high, resulting in extremely high, negative values for the nNs.

Figure 6.3(b) shows that the surface state density behaves like the intrinsic surface state
trapping model predicts. The Ns react slowly to a step in temperature and decrease as the
conductance increases.
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Figure 6.3: Plot of the normalized surface state density nNs for the completely (a) and partly
depleted case (b).

6.3 Simulation of nNs and G

To estimate the parameters in the surface model (6.1a) we will use a nonlinear least squares
objective function as well as the MATLAB function lsqnonlin. We will consider the conduc-
tance model (6.1b) in the case of partial depletion of charge carriers. Although one would
expect for Ai to have a similar value to the reaction rate A−i of its inverse reaction, the fitted
parameters show similar values as seen in the work of Fort et al.
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Parameters Ai Ei nNi A−i E−i
Values 1.237e−08 1.293e+04 9.593e+01 2.543e+03 1.011e+04

Table 6.2: The fitted parameters for the intrinsic surface state model (6.1a).

On basis of these parameters the normalized surface states nNs were computed and can
be seen in Figure 6.4. They show a somewhat better resemblance to the values calculated
from the data for the first two temperature steps than for the third jump. Despite that, the
associated fitting error is below 1.5%. This nevertheless implies that a lot of additional work
has to be put into the fitting of surface reaction parameters to gain simulated surface states
that are in a better agreement to the values of Figure 6.3(b)—especially regarding a more
correct simulation of the curvature in the surface states as a reaction to the third temperature
step.
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Figure 6.4: Simulated nNs computed with surface parameter set in Table 6.2 vs. measured
values.

The subsequent calculation of the corresponding conductance values are shown in Fig-
ure 6.5. The fitting error of the above simulation is now propagated to the simulation of the
conductance, leading to an error of 27.9% at the third temperature step, while up until this
point it was well below 10%.
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Figure 6.5: Simulated conductance G for computed nNs values from parameter set in Table
6.2 vs. measured conductance values.

65





Bibliography

Y. Bard. Nonlinear Parameter Estimation. Academic Press, 1974.

N. Bârsan and U. Weimar. Conduction Model of Metal Oxide Gas Sensors. Journal of
Electroceramics, 7:143–167, 2001.

N. Bârsan and U. Weimar. Understanding the fundamental principles of metal oxide based
gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J.
Phys.: Condens. Matter, 15:R813–R839, 2003.

A. Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.

A. Broniatowski. Polycrystalline Semiconductors, pages 95–117. Springer, 1985.

Y.-J. Choi, I.-S. Hwang, J.-G. Park, K. J. Choi, J.-H. Park, and J.-H. Lee. Novel fabrication
of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology, 19, 2008.

E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri. Quasi-one
dimensional metal oxide semiconductors: Preparation, characterization and application as
chemical sensors. Progress in Materials Science, 54:1–67, 2009.

J. Cortés, A. Narváez, H. Puschmann, and E. Valencia. Mean field theory studies of surface
reactions on disordered substrates. Chemical Physics, 288:77–88, 2003.

J. Cronin. Ordinary Differential Equations: introduction and qualitative theory. Chapman &
Hall/CRC, 2008.

R. Davidson and J. G. MacKinnon. Estimation and Inference in Econometrics. Oxford Uni-
versity Press, 1993.

R. Dickman. Kinetic phase transitions in a surface-reaction model: Mean-field theory. Physical
Review A, 34:4246–4250, 1986.

J. Ding, T. J. McAvoy, R. E. Cavicchi, and S. Semancik. Surface state trapping models for
SnO2-based microhotplate sensors. Sensors and Actuators B, 77:597–613, 2001.

H. W. Engl, C. Flamm, P. Kügler, J. Lu, S. Müller, and P. Schuster. Inverse problems in
systems biology. Inverse Problems, 25:123014, 2009.

I



P. Englezos and N. Kalogerakis. Applied Parameter Estimation for Chemical Engineers. Marcel
Dekker, Inc., 2001.

A. Fort, M. Mugnaini, S. Rocchi, M. B. Serrano-Santos, R. Spinicci, and V. Vignoli. Surface
State Model for Conductance Responses During Thermal-Modulation of SnO2-Based Thick
Film Sensors: Part II - Experimental Verification. IEEE Transactions on Instrumentation
and Measurement, 55:2107–2117, 2006a.

A. Fort, S. Rocchi, M. B. Serrano-Santos, R. Spinicci, and V. Vignoli. Surface State Model for
Conductance Responses During Thermal-Modulation of SnO2-Based Thick Film Sensors:
Part I - Model Derivation. IEEE Transactions on Instrumentation and Measurement, 55:
2102–2106, 2006b.

A. Fort, M. Mugnaini, S. Rocchi, M. B. Serrano-Santos, V. Vignoli, and R. Spinicci. Simpli-
fied models for SnO2 sensors during chemical and thermal transients in mixtures of inert,
oxidizing and reducing gases. Sensors and Actuators B, 124:245–259, 2007.

A. Fort, M. Mugnaini, V. Vignoli, S. Rocchi, E. Comini, G. Faglia, and A. Ponzoni. Charac-
terization and modelling of SnO2 nanowire sensors for CO detection. In Proceedings of the
3rd International Workshop on Advances in sensors and Interfaces, pages 41–45, 2009.

A. Fort, M. Mugnaini, S. Rocchi, V. Vignoli, E. Comini, G. Faglia, and A. Ponzoni. Metal-
oxide nanowire sensors for CO detection: Characterization and modeling. Sensors and
Actuators B, 148:283–291, 2010.

D. Girardin, F. Berger, A. Chambaudet, and R. Planade. Modelling of SO2 detection by tin
dioxide gas sensors. Sensors and Actuators B, 43:147–153, 1997.

J. Gong, Q. Chen, W. Fei, and S. Seal. Micromachined nanocrystalline SnO2 chemical gas
sensors for electronic nose. Sensors and Actuators B, 102:117–125, 2004.

A. Gurlo, N. Bârsan, M. Ivanovskaya, U. Weimar, and W. Göpel. In2O3 and MoO3 − In2O3

thin film semiconductor sensors interaction with NO2 and O3. Sensors and Actuators B,
47:92–99, 1998.

S. H. Hahn, N. Bârsan, U. Weimar, S. G. Ejakov, J. H. Visser, and R. E. Soltis. CO sensing
with SnO2 thick film sensors: role of oxygen and water vapor. Thin Solid Films, 436:17–24,
2003.

J. Häusler. Charakterisierung von Gassensoren zur Überwachung belasteter Raumluft. PhD
thesis, Justus Liebig University Gießen, Germany, 2004.

D. J. Higham. Modeling and Simulating Chemical Reactions. SIAM Review, 50:247–368,
2008.

II



N. D. Hoa, N. V. Quy, and D. Kim. Nanowire structured SnOx-SWNT composites: High
performance sensor for NOx detection. Sensors and Actuators B, 142:153–259, 2009.

J. Huang and Q. Wan. Gas sensors based on semiconducting metal oxide one-dimensional
nanostructures. Sensors, 9:9903–9924, 2009.

R. Ionescu, E. Llobet, S. Al-Khalifa, J. W. Gardner, X. Vilanova, J. Brezmes, and X. Correig.
Response model for thermally modulated tin oxide-based microhotplate gas sensors. Sensors
and Actuators B, 95:203–211, 2003.

K. Katterbauer. Pbsens: A mathematical model for nanowire gas-sensors. Master’s thesis,
University of Vienna, 2010.

U. Kersen and L. Holappa. H2S-sensing properties of SnO2 produced by ball milling and
different chemical reactions. Analytica Chimica Acta, 562:110–114, 2006.

A. Köck, A. Tischner, T. Maier, M. Kast, C. Edtmaier, C. Gspan, and G. Kothleitner. Atmo-
spheric pressure fabrication of SnO2-nanowires for highly sensitive CO and CH4 detection.
Sensors and Actuators B, 138:160–167, 2009.

D. Kohl. Function and applications of gas sensors. J. Phys. D: Appl. Phys., 34:R125–R149,
2001.

A. N. Kolgmogorov and S. V. Fomin. Introductory Real Analysis. Dover Publications, Inc.,
1970.

C.-M. Kuan. Introduction to econometric theory. Lecture Notes, 2004. URL http://idv.

sinica.edu.tw/ckuan/pdf/et01/et01.pdf.

G. Leo, R. Rella, P. Siciliano, S. Capone, J. Alonso, V. Pankov, and A. Ortiz. Sprayed SnO2

thin films for NO2 sensors. Sensors and Actuators B, 58:370–374, 1999.

H. Liu, S. P. Gong, Y. X. Hu, J. Q. Liu, and D. X. Zhou. Properties and mechanism study of
SnO2 nanocrystals for H2S thick-film sensors. Sensors and Actuators B, 140:190–195, 2009.

J. G. Lu, P. Chang, and Z. Fan. Quasi-one-dimensional metal oxide materials: Synthesis,
properties and applications. Materials Science and Engineering R, 52:49–91, 2006.

E. W. Lund. Guldberg and waage and the law of mass action. Journal of Chemical Education,
42:548–550, 1965.

M. J. Madou and S. R. Morrison. Chemical Sensing With Solid State Devices. Academic Press,
first edition, 1989.

V. V. Malyshev. Response of Semiconducting Metal Oxides to Water Vapor as a Result
of Water Molecules Chemical Transformations on Catalytically Active Surface. Russian
Journal of Physical Chemistry A, 82:2329–2339, 2008.

III

http://idv.sinica.edu.tw/ckuan/pdf/et01/et01.pdf
http://idv.sinica.edu.tw/ckuan/pdf/et01/et01.pdf


V. V. Malyshev and A. V. Pislyakov. SnO2-based thick-film-resistive sensor for H2S detection
in the concentration range of 1-10 mg m−3. Sensors and Actuators B, 47:181–188, 1998.

V. V. Malyshev and A. V. Pislyakov. Investigation of gas-sensitivity of sensor structures
to hydrogen in a wide range of temperature, concentration and humidity of gas medium.
Sensors and Actuators B, 134:913–921, 2008.

S. R. Morrison. The Chemical Physics of Surfaces. Plenum Press, second edition, 1990.

A. Naydenov, R. Stoyanova, and D. Mehandjiev. Ozone decomposition and CO oxidation on
CeO2. Journal of Molecular Catalysis A: Chemical, 98:9–14, 1995.

H.-Y. Pan and H. J. Wang. A two-species surface reaction model of the mixing type. Physica
A, 227:234–238, 1996.

F. Quaranta, R. Rella, P. Siciliano, S. Capone, M. Epifani, L. Vasanelli, A. Licciulli, and
A. Zocco. A novel gas sensor based on SnO2/Os thin film for the detection of methane at
low temperature. Sensors and Actuators B, 58:350–355, 1999.

B. Ruhland, T. Becker, and G. Müler. Gas-kinetic interaction of nitrous oxides with SnO2

surfaces. Sensors and Actuators B, 50:85–94, 1998.

I. Sayago, J. Gutihrez, L. Ads, J. Robla, M. Horrillo, J. Getino, and J. Agapito. The interaction
of different oxidizing agents on doped tin oxide. Sensors and Actuators B, 24-25:512–515,
1995.

K. Tabata, T. Kawabe, Y. Yamaguchi, and Y. Nagasawa. Chemisorbed oxygen species over
the (110) face of SnO2. Catalysis Surveys from Asia, 7:251–259, 2003.

W. E. Taylor, N. H. Odell, and H. Y. Fan. Grain boundary barriers in germanium. Physical
Review, 88:867–875, 1952.

A. Tischner, T. Maier, C. Stepper, and A. Köck. Ultrathin SnO2 gas sensors fabricated by
spray pyrolysis for the detection of humidity and carbon monoxide. Sensors and Actuators
B, 134:796–802, 2008.

A. Tischner, A. Köck, T. Maier, C. Edtmaier, C. Gspan, and G. Kothleitner. Tin oxide
nanocrystalline films and nanowires for gas sensing applications. Microelectronic Engineer-
ing, 86:1258–1261, 2009.

Z. L. Wang. ZnO nanowire and nanobelt platform for nanotechnology. Material Science and
Engineering R, 64:33–71, 2009.

N. Yamazoe and K. Shimanoe. Theory of power laws for semiconductor gas sensors. Sensors
and Actuators B, 128:566–573, 2008.

IV



N. Yamazoe and K. Shimanoe. Theoretical approach to the rate of response of semiconductor
gas sensors. Sensors and Actuators B, 154:277–282, 2010.

A. Zima. Development of highly sensitive nano-gassensors based on nanocrystalline tin dioxide
thin film and single-crystalline tin dioxide nanowires. PhD thesis, Vienna University of
Technology, 2009.

A. Zima, A. Köck, and T. Maier. In- and sb-doped tin oxide nanocrystalline films for selective
gas sensing. Microelectronic Engineering, 87:1467–1470, 2010.

V





Acknowledgments

I would like to take this opportunity to express sincere gratitude to my supervisor Clemens
Heitzinger, for giving me the chance to write my diploma thesis in a fascinating field of science
with real life application, for his technical expertise, ideas, time and patience.

I also thank the WPI (Wolfgang Pauli Institute) and its members in general, for provid-
ing an ideal setting for my thesis by supplying a inspiring working environment. A special
thanks to Klemens Katterbauer, with whom I have discussed many ideas and who laid the
computational groundwork. In particular I would like to thank Alena Bulyha, Martin Vasicek,
Stefan Baumgartner, Nathalie Tassotti and Angelika Manhart, with whom I have been fortu-
nate enough to benefit from working with. Also I would like to thank Elise Brunet and Anton
Köck as well as their colleagues from the AIT for giving explanations to chemical and physical
aspects of gas sensors and specifically for supplying the relevant measurement data.

Furthermore I would like to acknowledge my family, and most of all my parents Marina
and Georg Rehrl for supporting and encouraging me in my studies and for making them
possible in the first place.

I also want to thank all my friends for backing me up in my daily life.

Financial support by the Vienna Science and Technology Fund (WWTF) project "Math-
ematics and Nanosensors" (No.MA09-028) is thankfully acknowledged.

VII





Abstract

This thesis deals with the modeling of metal oxide nanowire gas sensors, which are technical
devices in the scale of nanometers, that are used to detect different gases in different concen-
trations in the atmosphere. As state of the art gas sensors show a low selectivity, the detailed
modeling of the surface reactions caused by different test gases is essential to overcome this
issue.

The developed response models, described in this work, are composed of an ODE surface
reaction model and a charge transport model (both parameter dependent) and predict the
change of conductance of the sensor upon changes in the thermal and chemical environment.
In this diploma thesis we present surface reaction models for the most important and test gas
species that are relevant for applications, show their derivation and give a detailed discussion
of their properties.

In order to facilitate the simulation of the sensor response, the theory of inverse model-
ing of dynamic models, with special regard to the estimation of model parameters through
nonlinear least squares estimators and suitable optimization algorithms, is discussed.

A one parameter transport model in combination with a five parameter surface reaction
model is used to simulate the response of a gas sensor consisting of a bundle of nanowires in
an inert atmosphere. Reaction as well as conduction parameters is fitted in a nonlinear least
squares estimation process, using inverse modeling techniques.
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Zusammenfassung

Diese Diplomarbeit behandelt die mathematische Modellierung von Nanowire Gassen-
soren, also Sensoren in der Größenordnung einiger Nanometer die zur Detektion verschiedener
Gase und deren Konzentration in der Umgebungsluft verwendet werden. Aktuell erforschte und
enwickelte Gassensoren können schwer zwischen bestimmten Gasen unterscheiden, desswegen
ermöglicht die mathematischen Modellierung ein tiefergehendes Verständnis der für den Sen-
sorausschlag verantwortlichen Oberflächereaktionen auch eine Verbesserung dieser Kreuzselek-
tivität.

Die in dieser Arbeit hergeleiteten Sensormodelle setzen sich jeweils aus einem Oberflächen-
modell, bestehend aus gewöhlichen Differentialgleichungen, und einem Ladungstransportmod-
ell – beide paramterabhängig – zusammen und sagen die Änderung der Leitfähigkeit, verur-
sacht durch eine Änderung der Temperature und der chemischen Zusammensetzung der Umge-
bungsluft, voraus. Wir präsentieren Oberflächenmodelle für alle wichtigen, für Anwendungen
relevanten Gassorten, leiten sie her und diskutieren sie im Detail.

Um eine spätere quantitative Analyse von Modellen und Messdaten zu ermöglichen,
wurde die Theorie der Inversen Modellierung von dynamischen Modellen behandelt. Hierbei
wurde besondere Aufmerksamkeit auf die asymptotische Theorie nichtlinearer Least Squares
Schätzmethoden und auf dafür passende Optimierungsalgorithmen verwendet.

Ein einparametriges Transportmodell in Kombination mit einem Oberflächenreaktion-
smodell, bestehend aus 5 Parametern, wird benutzt um das Verhalten eines Geassensors,
bestehend aus einem Netzwerk von Nanodrähten, in einer Edelgasatmosphäre zu simulieren.
Hierzu wurden die Reaktionskonstanten und Parameter beider Modelle durch einen nichtlin-
earen Least Sqares Schätzprozesses gefittet, unter zuhilfenahme von Inverser Modellierung.
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